scholarly journals Thermal Performance of Phase Change Material Based Heat Sink for Solar Photovoltaic Cooling

Solar photovoltaic panels can receive only eighty percent of total incident solar radiation. A small amount of incident energy is transformed into electrical energy based on the efficiency of the photovoltaic (PV) cell. The remaining energy leads to an increase in photovoltaic cell operating temperature which affects its life and power output. Cooling of PV panel is the best way to improve the efficiency either by passive or active cooling methods. PV cooling by Phase change materials (PCM) is the best effective technique. Paraffin wax is a non toxic material having high latent heat of fusion used for many thermal applications. In this study, paraffin wax is taken as phase change material in aluminum heat sink with fins. Using DSC, the melting point of paraffin wax is analysed. The flat plate heater is used instead of solar PV panel. Different wattages are used for the experiments. Different inclinations such as horizontal (00 ), vertical (900 ) and intermediate (450 ) were taken in to consideration. The melting starts at 50oC and complete melting occurs at a temperature around 60oC for the paraffin based heat sink. The heat sink surface temperatures, fin temperatures and PCM temperatures are measured. The transient temperature distribution of heat sink, PCM is analysed at different wattage inputs. The total thermal performance of this paraffin PCM based heat sink was analysed experimentally. This infers that the cooling of high temperature of PV panels can be done by using paraffin based PCM to increase the efficiency and life of the panels.

2022 ◽  
Vol 48 ◽  
pp. 103882
Author(s):  
Adeel Arshad ◽  
Mark Jabbal ◽  
Hamza Faraji ◽  
Pouyan Talebizadehsardari ◽  
Muhammad Anser Bashir ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2558 ◽  
Author(s):  
Preeti Singh ◽  
Sourav Khanna ◽  
Sanjeev Newar ◽  
Vashi Sharma ◽  
K. Reddy ◽  
...  

Phase change material (PCM) based passive cooling of photovoltaics (PV) can be highly productive due to high latent heat capacity. However, the low rate of heat transfer limits its usefulness. Thus, the presented work aims at the improvement in PV cooling by using finned PCM (FPCM) heat sinks. In the present study, PCM heat sink and FPCM heat sinks were investigated numerically for PV cooling and the extracted heat is used for space heating. 4 kWp PV, PV-PCM and PV-FPCM systems were studied under the weather conditions of Southeast of England. It was observed that the PCM heat sinks can drop the peak PV temperature by 13 K, whereas FPCM heat sinks can enhance the PV cooling by 19 K. The PCM heat sinks can increase the PV electrical efficiency from 13% to 14%. Moreover, the daily electricity generation can be boosted by 7% using PCM and 8% by using FPCM heat sinks. In addition, 7 kWh of thermal output was achieved using the FPCM heat sink, and the overall efficiency of system increased from 13% to 19%.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Preeda Chantawong

The author reports an experimental investigation of the thermal performance of a multipurpose photovoltanic (PV) solar wall with phase change material (PVSW-PCM). The PVSW-PCM configuration was made of double layers. The external layer consists of a 12 Wp photovoltaic panel attached to a 15 cm thick PCM tank integrating water pipes. The internal wall is an ordinary clear glass pane. There is an 8 cm air gap between the two layers. The PVSW-PCM was integrated into the southern side of a small house of 4.05 m3 volume built by autoclaved aerated concrete block walls 0.07 m thick. On top of the external layer, three glass blocks (3 × 0.2 × 0.2 cm2) are installed to ensure indoor illumination. The absorbed solar radiation by the PV panel and PCM heats the water in the pipes and the air in the gap. The hot water produced is stored in a 10 liters tank located near the roof. At the inner lower part (room side) and the external upper part (ambient) of the gap, a small DC fan (12 V, 0.48 A) box was installed. The fans were connected to the PV panel directly to enhance indoor ventilation. The investigation considered both natural (fans OFF) and PV assisted ventilation. Another similar house without the PVSW-PCM referred to as glass wall (GW) was built and used as a reference for comparison. The experimental results revealed that the indoor temperature of the PVSW-PCM house was considerably lower than that of the GW house. Moreover, the PVSW-PCM could produce hot water temperature of 55–62 °C and induce a ventilation rate proportional to the intensity of solar radiation. Indoor illumination was sufficient for general house use. Therefore, the PVSW-PCM offers a new alternative for architects and engineers to reduce electric energy use for producing hot water and ventilation and save electrical energy consumption of air conditioner, as the indoor temperature is lower than that of the conventional house.


2019 ◽  
Vol 29 (4) ◽  
pp. 1490-1505 ◽  
Author(s):  
Alper Ergün ◽  
Hilal Eyinç

Purpose Nanotechnology has developed gradually in recent years and it is encountered in various applications. It has many usage area especially in energy systems. The purpose of this study, in a photovoltaic thermal system, thermal behaviours of a PV panel has been investigated by energy and exergy analysis method using a phase change material inserted 5 per cent weighted Al2O3 nanoparticle. Design/methodology/approach In this study, one of the three different PV panels was kept normally, the other one was filled with a phase changing material (paraffin-wax) and the last panel was filled with the mixture of a nanoparticle and paraffin-wax. Findings After the analyses, especially during the time intervals when the radiation is high, it is found that the panel with Np-paraffin mixture has a high electrical and thermal efficiency. In addition, as a result of the exergy analyses, average exergy efficiency of the panel with Np-paraffin mixture has been determined as 10 per cent, whereas that of the panel with paraffin as 9.2 per cent. Originality/value Nanoparticles had not been used with PCMs in photovoltaic–thermal systems in the studies made before.


2016 ◽  
Vol 25 ◽  
pp. 1182-1190 ◽  
Author(s):  
Jesto Thomas ◽  
P.V.S.S. Srivatsa ◽  
S. Ramesh Krishnan ◽  
Rajesh Baby

Sign in / Sign up

Export Citation Format

Share Document