foam structure
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 49)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Vol 46 ◽  
pp. 103907
Author(s):  
Jun Wang ◽  
Jiangting Wang ◽  
Guisheng Zhu ◽  
Huarui Xu ◽  
Xiuyun Zhang ◽  
...  

Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 122219
Author(s):  
Hao Zhang ◽  
Yong Shuai ◽  
Bachirou Guene Lougou ◽  
Boshu Jiang ◽  
Dazhi Yang ◽  
...  

2021 ◽  
pp. 51992
Author(s):  
Chao Yan ◽  
Ye‐Jun Luo ◽  
Wen‐Ge Zhang ◽  
Zi‐Fan Zhu ◽  
Pei‐Ying Li ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Tiina Nypelö ◽  
Jessica Fredriksson ◽  
Vishnu Arumughan ◽  
Emanuel Larsson ◽  
Stephen A. Hall ◽  
...  

Foaming of most bio-based polymers is challenged by low pore formation and foam stability. At the same time, the developing utilization of bio-based materials for the circular economy is placing new demands for easily processable, low-density materials from renewable raw materials. In this work, we investigate cellulose nanofiber (CNF) foams in which foaming is facilitated with wood-based hemicelluloses, galactoglucomannans (GGMs). Interfacial activity of the GGM is modulated via modification of the molecule’s amphiphilicity, where the surface tension is decreased from approximately 70 to 30 mN m−1 for unmodified and modified GGM, respectively. The chemical modification of GGMs by substitution with butyl glycidyl ether increased the molecule’s hydrophobicity and interaction with the nanocellulose component. The highest specific foam volume using 1 wt% CNF was achieved when modified GGM was added (3.1 ml g−1), compared to unmodified GGM with CNF (2.1 ml g−1). An amount of 96 and 98% of the GGM and GGM-BGE foams were lost after 15 min of foaming while the GGM and GGM-BGE with cellulose nanofibers lost only 33 and 28% of the foam respectively. In the case of GGM-BGE, the foam stability increased with increasing nanofiber concentration. This suggests that the altered hydrophobicity facilitated increased foam formation when the additive was incorporated in the CNF suspension and foamed with nitrous oxide (N2O). Thus, the hydrophobic character of the modified GGM was a necessity for foam formation and stability while the CNFs were needed for generating a self-standing foam structure.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1034
Author(s):  
Dmitry A. Skladnev ◽  
Sergei P. Karlov ◽  
Yuliya Y. Khrunyk ◽  
Oleg R. Kotsyurbenko

The data available at the moment suggest that ancient Venus was covered by extensive bodies of water which could harbor life. Later, however, the drastic overheating of the planet made the surface of Venus uninhabitable for Earth-type life forms. Nevertheless, hypothetical Venusian organisms could have gradually adapted to conditions within the cloud layer of Venus—the only niche containing liquid water where the Earth-type extremophiles could survive. Here we hypothesize that the unified internal volume of a microbial community habitat is represented by the heterophase liquid-gas foam structure of Venusian clouds. Such unity of internal space within foam water volume facilitates microbial cells movements and trophic interactions between microorganisms that creates favorable conditions for the effective development of a true microbial community. The stabilization of a foam heterophase structure can be provided by various surfactants including those synthesized by living cells and products released during cell lysis. Such a foam system could harbor a microbial community of different species of (poly)extremophilic microorganisms that are capable of photo- and chemosynthesis and may be closely integrated into aero-geochemical processes including the processes of high-temperature polymer synthesis on the planet’s surface. Different complex nanostructures transferred to the cloud layers by convection flows could further contribute to the stabilization of heterophase liquid-gas foam structure and participate in chemical and photochemical reactions, thus supporting ecosystem stability.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dianqiao Geng ◽  
Jiahui Li ◽  
Huaying Li ◽  
Wenzhan Huang

Particle addition is an important method to prepare foam metal, and it is of great significance to clarify the mechanism of particle stabilizing liquid metal foam. In this paper, ethanol-water solution system is used to simulate liquid melt foam. By changing the wettability of particles to adjust the distribution position of particles in foam, two types of particles with different wettability are added, which are mixed and optimized in a certain proportion to improve the foam stability as much as possible. The main mechanism is that the large wetting angle particles at the gas-liquid interface to slow down the gas migration, while small wetting angle particles exist in the liquid film, which can reduce the liquid drainage velocity. The experimental results show that the effect of particle wettability on foam structure is greater than that on viscosity enhancement. The particles with large wetting angle are beneficial to the formation and stability of foam, and the particles with small wetting angle cannot stabilize the foam alone. The effect of two types of particle combinations with different wettability on foam stability is better than that of single type of particle. Considering the height and uniformity of the foam structure, the optimal particle combination is finally obtained.


Micro ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 86-101
Author(s):  
Isabelle Huynen

The paper investigates the mechanisms of microwave absorption in microcellular foamed conductive composites dedicated to protection against electromagnetic interferences (EMI). A multi-layered electromagnetic one-dimensional (1D) model mimicking the microcellular foam structure is built and validated using previous measurements carried out on various fabricated composite foams. Our model enables us to perform a parametric analysis of the absorption behaviour in a foamed composite, using as parameters the size of the hollow cell, the thickness of the cell’s walls and its conductivity, as well as the overall thickness of the composite and the frequency. Our investigations demonstrate that multiple reflections of the microwave signal between the cellular walls are not the main mechanism responsible for absorption, although they are often reported as a cause of enhanced absorption in the literature. On the contrary, our work demonstrates that the enhancement of the absorption observed in foamed conductive composite compared to unfoamed composite is mainly due to the presence of air in the microcells of the composite.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3623
Author(s):  
Arun Gopinathan ◽  
Jaroslav Jerz ◽  
Jaroslav Kováčik ◽  
Tomáš Dvorák

Among different promising solutions, coupling closed-cell aluminium foam composite panels prepared by a powder metallurgical method with pore walls interconnected by microcracks, with low thermal conductivity phase change materials (PCMs), is one of the effective ways of increasing thermal conductivity for better performance of thermal storage systems in buildings. The internal structure of the foam formation, related to the porosity which decides the heat transfer rate, plays a significant role in the thermal energy storage performance. The dependence of the heat transfer characteristics on the internal foam structure is studied numerically in this work. The foamable precursor of 99.7% pure aluminium powder mixed with 0.15 wt.% of foaming agent, TiH2 powder, was prepared by compacting, and extruded to a volume of 20 × 40 × 5 mm. Two aluminium foam samples of 40 × 40 × 5 mm were examined with apparent densities of 0.7415 g/cm3 and 1.62375 g/cm3. The internal porous structure of the aluminium foam samples was modelled using X-ray tomography slices through image processing techniques for finite element analysis. The obtained numerical results for the heat transfer rate and effective thermal conductivity of the developed surrogate models revealed the influence of porosity, struts, and the presence of pore walls in determining the heat flow in the internal structure of the foam. Additionally, it was found that the pore size and its distribution determine the uniform heat flow rate in the entire foamed structure. The numerical data were then validated against the analytical predictions of thermal conductivity based on various correlations. It has been found that the simplified models of Bruggemann and Russell and the parallel–series model can predict the excellent effective thermal conductivity results of the foam throughout the porosity range. The optimal internal foam structure was studied to explore the possibilities of using aluminium foam for PCM-based thermal storage applications.


Sign in / Sign up

Export Citation Format

Share Document