scholarly journals Concave Shape Microstrip Patch Antenna using SRR for 5G Applications

A single band microstrip-fed patch antenna is presented which contains the radiating structure having concave shape slots and split ring resonator loaded in the partial ground plane. This partial ground plane has been used to enhance the bandwidth of proposed antenna. Both the partial ground plane and radiating patch are perfect electric conductors. The patch is imprinted on a substrate named as Epoxy Glass FR-4 having thickness 1.6 mm, relative permittivity 4.4, and loss tangent 0.0024. The designed concave shape microstrip patch antenna (MPA) is resonate at single frequency band from 3.4-3.8 GHz with 400 MHz bandwidth and corresponding return loss of -25dB. A parametric study has been performed for the concave shape slots located in the patch. Proposed MPA is simulated using Computer Simulation Technology Microwave Studio Version 14.0 (CST MWS V14.0). Furthermore, the radiation performance of antenna in terms of gain and radiation efficiency has been analyzed . The proposed antenna is having a peak gain of 3.2 dB and radiation efficiency of 94%.

2016 ◽  
Vol 78 (5-5) ◽  
Author(s):  
Nornikman Hassan ◽  
Mohamad Zoinol Abidin Abd. Aziz ◽  
Muhammad Syafiq Noor Azizi ◽  
Mohamad Hafize Ramli ◽  
Mohd Azlishah Othman ◽  
...  

In this project, the different locations of the quadruple P-spiral split ring resonator (MI-SRR) structure are embedded in the basic rectangular patch antenna. It started with a basic rectangular microstrip patch antenna that simulated in CST Microwave Studio software. After that, four different locations (Location A, Location B, Location C and Location D) of QPS-SRR had chosen to compare its performance of return loss, resonant frequency, surface current radiation pattern, and gain. Location A is representing the antenna with the QPS-SRR at the center part of the patch while Location B has the QPS-SRR at the upper part of the FR-4 substrate. For the Location C and Location D represent the antenna with MI-SRR at the ground at antenna with MI-SRR at the other layer, respectively. Compared with the basic rectangular antenna with only – 27.082 dB, the best return loss was reached by Location A with - 34.199 dB with resonant frequency at 2.390 GHz, while the Location C only shifted the minor value to 2.394 GHz with only - 25.13 dB.


Author(s):  
PREET KAUR ◽  
RAJIV NEHRA ◽  
MANJEET KADIAN ◽  
DR. ASOK DE ◽  
DR. S.K. AGGARWAL

In this paper, two novel defected ground structures (DGS) are proposed to improve the return loss, compactness, gain and radiation efficiency of rectangular microstrip patch antenna. The performance of antenna is characterized by the shape, dimension & the location of DGS at specific position on ground plane. By incorporating a peacock shaped slot of optimum geometries at suitable location on the ground plane, return loss is enhanced from -23.89 dB to -43.79 dB, radiation efficiency is improved from 97.66% to 100% and compactness of 9.83% is obtained over the traditional antenna .Simulation results shows that the patch antenna with star shaped DGS can improve the impedance matching with better return loss of -35.053 dB from -23.89 dB and compactness of 9% is achieved. In the end comparison of both DGS shapes is carried out to choose one best optimize one. The proposed antennas are simulated and analyzed using Ansoft HFSS (version 11.1) software.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Indrasen Singh ◽  
Vijay Shanker Tripathi ◽  
Sudarshan Tiwari

A dual-band microstrip patch antenna is designed and analyzed using metamaterial artificial substrate. Metamaterial based substrate is designed using Square Split Ring Resonator (SSRR) and Wire Strip. The antenna is tuned to work at two resonating frequencies in the frequency range from 1 GHz to 4 GHz depending on the geometric specifications of SSRR, strip line, radiating patch, and feed location point. Proposed antenna provides good return loss behavior at both resonating frequencies. The obtained VSWR at both resonating frequencies is very much near to 1. Proposed antenna covers applications in mobile communication and Wi-MAX. Proposed patch antenna is compared with the conventional patch antenna, which shows the significant miniaturization as compared to conventional patch antenna.


A microstrip patch antenna is low profile antenna mounted over a high impedance electromagnetic bandgap (EBG) substrate is proposed. In this paper, Microstrip patch antenna with rectangular EBG structure is proposed and studied. The proposed antenna has compact structure with a total size of 29.44x38.036mm2 . The designed antenna resonates at Particular Single frequency with improved return loss, VSWR and gain. The resonant frequency of the antenna 2.4GHz without and with EBG and improved return loss of -17.61dB and -18.30dB. With rectangular EBG the antenna gives improved gain of 2.09 dB. The Proposed antenna is simulated by using Simulation software ie.(IE3D) and simulated results are in good with practical antenna characteristics.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
D. Khedrouche ◽  
T. Bougoutaia ◽  
A. Hocini

AbstractIn this paper, a miniaturized microstrip patch antenna using a negative index metamaterial with modified split-ring resonator (SRR) unit cells is proposed for ultra-wideband (UWB) applications. The new design of metamaterial based microstrip patch antenna has been optimized to provide an improved bandwidth and multiple frequency operations. All the antenna performance parameters are presented in response-graphs. Also it is mentioned that the physical dimensions of the metamaterial based patch antenna are very small, which is convenient to modern communication. A 130 % bandwidth, covering the frequency band of 2.9–13.5 GHz, (for return loss less than or equal –10 dB) is achieved, which allow the antenna to operate in the Federal Communication Commission (FCC) band. In addition, the antenna has a good radiation pattern in the ultra-wide band spectrum, and it is nearly omnidirectional.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document