scholarly journals On the Secrecy Outage of Wiretap Channel

In wireless data transmission, providing security over communication channels has become a growing concern. Traditionally cryptography is used to provide secrecy. However, physical layer studies show that it allows a huge potential in providing secrecy. In this paper, secrecy outage probability is derived for Rician fading channels. A new secrecy metric Generalized Secrecy Outage Probability(GSOP) derivation is considered to overcome the limitation of traditional Outage probability for both passive and active cases of eavesdropping.

2021 ◽  
Author(s):  
Shinya Sugiura

<p>In this paper, we investigate the information-theoretic secrecy performance of recent precoded faster-than-Nyquist signaling (FTN) with the aid of optimal power allocation in eigenspace. More specifically, the secrecy rate and secrecy outage probability of a fading wiretap channel, which was derived for classical Nyquist-based orthogonal signaling transmission ,is extended to those of our eigen decomposition-based FTN (E-FTN) signaling for a quasi-static frequency-flat Rayleigh fading channel. Our performance results demonstrate that the proposed E-FTN signaling scheme exhibits improvements in secrecy rate and secrecy outage probability over conventional Nyquist-based and FTN signaling transmissions. We also show that the same benefits as those of single-carrier E-FTN signaling are attainable by its non-orthogonal multicarrier counterpart, where subcarrier spacing is set lower than that of orthogonal frequency-division multiplexing.<br></p><p><br></p><p>Postprint accepted on 1 April 2021 for publication in IEEE Transactions on Wireless Communications (DOI: 10.1109/TWC.2021.3070891). (c) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.</p>


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 99
Author(s):  
Eduard Jorswieck ◽  
Pin-Hsun Lin ◽  
Karl-Ludwig Besser

It is known that for a slow fading Gaussian wiretap channel without channel state information at the transmitter and with statistically independent fading channels, the outage probability of any given target secrecy rate is non-zero, in general. This implies that the so-called zero-outage secrecy capacity (ZOSC) is zero and we cannot transmit at any positive data rate reliably and confidentially. When the fading legitimate and eavesdropper channels are statistically dependent, this conclusion changes significantly. Our work shows that there exist dependency structures for which positive zero-outage secrecy rates (ZOSR) are achievable. In this paper, we are interested in the characterization of these dependency structures and we study the system parameters in terms of the number of observations at legitimate receiver and eavesdropper as well as average channel gains for which positive ZOSR are achieved. First, we consider the setting that there are two paths from the transmitter to the legitimate receiver and one path to the eavesdropper. We show that by introducing a proper dependence structure among the fading gains of the three paths, we can achieve a zero secrecy outage probability (SOP) for some positive secrecy rate. In this way, we can achieve a non-zero ZOSR. We conjecture that the proposed dependency structure achieves maximum ZOSR. To better understand the underlying dependence structure, we further consider the case where the channel gains are from finite alphabets and systematically and globally solve the ZOSC. In addition, we apply the rearrangement algorithm to solve the ZOSR for continuous channel gains. The results indicate that the legitimate link must have an advantage in terms of the number of antennas and average channel gains to obtain positive ZOSR. The results motivate further studies into the optimal dependency structures.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Danh H. Ho ◽  
T. Aaron Gulliver

This paper considers power allocation in cellular networks over Rician fading channels. The goal is to improve the power consumption and energy efficiency as well as satisfy as many users as possible subject to user outage probability and normalized signal to interference plus noise ratio (SINR) constraints. The exact outage probability over Rician fading channels is determined using the moment-generating function (MGF). Further, upper and lower bounds on the outage probability are derived. These are used to characterize the relationship between outage probability and normalized SINR in Rician fading channels. Power allocation algorithms for power minimization and energy efficiency are proposed. Simulation results are presented to compare the performance of the proposed schemes with existing methods in terms of power consumption, throughput, energy efficiency, outage probability, and number of unsatisfied users.


Sign in / Sign up

Export Citation Format

Share Document