scholarly journals Bounds on the Secrecy Outage Probability for Dependent Fading Channels

Author(s):  
Karl-Ludwig Besser ◽  
Eduard A. Jorswieck

In wireless data transmission, providing security over communication channels has become a growing concern. Traditionally cryptography is used to provide secrecy. However, physical layer studies show that it allows a huge potential in providing secrecy. In this paper, secrecy outage probability is derived for Rician fading channels. A new secrecy metric Generalized Secrecy Outage Probability(GSOP) derivation is considered to overcome the limitation of traditional Outage probability for both passive and active cases of eavesdropping.


2019 ◽  
Vol 23 (9) ◽  
pp. 1479-1483 ◽  
Author(s):  
Hui Zhao ◽  
Yuanwei Liu ◽  
Ahmed Sultan-Salem ◽  
Mohamed-Slim Alouini

Frequenz ◽  
2015 ◽  
Vol 69 (7-8) ◽  
Author(s):  
Yajun Zhang ◽  
Tao Liang ◽  
Aiwei Sun

AbstractIn this paper, we propose a hybrid scheme called transmit antenna selection and receiver’s artificial noise (TAS–rAN) for security enhancement in multiple-input single-output (MISO) wiretap channels. In this scheme, by using TAS protocol, the transmitter selects a single antenna that maximizes the instantaneous signal-to-noise ratio (SNR) at the full-duplex receiver. While the transmitter uses this antenna to transmit secrecy data, the full-duplex receiver would send artificial noise (AN) to confuse the potential eavesdropper. For the proposed protocol, we consider Rayleigh fading channels with different parameters for the main channel and the eavesdropper’s channel, and derive new closed-form expressions for the exact secrecy outage probability and the asymptotic secrecy outage probability. We demonstrate that the proposed TAS–


2021 ◽  
Vol 13 (8) ◽  
pp. 205
Author(s):  
Deemah Tashman ◽  
Walaa Hamouda

In this paper, the physical-layer security for a three-node wiretap system model is studied. Under the threat of multiple eavesdroppers, it is presumed that a transmitter is communicating with a legitimate receiver. The channels are assumed to be following cascaded κ-μ fading distributions. In addition, two scenarios for eavesdroppers’ interception and information-processing capabilities are investigated: colluding and non-colluding eavesdroppers. The positions of these eavesdroppers are assumed to be random in the non-colluding eavesdropping scenario, based on a homogeneous Poisson point process (HPPP). The security is examined in terms of the secrecy outage probability, the probability of non-zero secrecy capacity, and the intercept probability. The exact and asymptotic expressions for the secrecy outage probability and the probability of non-zero secrecy capacity are derived. The results demonstrate the effect of the cascade level on security. Additionally, the results indicate that as the number of eavesdroppers rises, the privacy of signals exchanged between legitimate ends deteriorates. Furthermore, in this paper, regarding the capabilities of tapping and processing the information, we provide a comparison between colluding and non-colluding eavesdropping.


2021 ◽  
Author(s):  
Shu Xu ◽  
Chen Liu ◽  
Hong Wang ◽  
Mujun Qian ◽  
Wenfeng Sun

Abstract Secure transmission is essential for future non-orthogonal multiple access (NOMA) system. This paper investigates relay-antenna selection (RAS) to enhance physical-layer security (PLS) of cooperative NOMA system in the presence of an eavesdropper, where multiple antennas are deployed at the relays, the users, and the eavesdropper. In order to reduce expense on radio frequency (RF) chains, selection combining (SC) is employed at both the relays and the users, whilst the eavesdropper employs either maximal-ratio combining (MRC) or selection combining (SC) to process the received signals. Under the condition that the channel state information (CSI) of the eavesdropping channel is available or unavailable, two e↵ective relay-antenna selection schemes are proposed. Additionally, the closed-form expressions of secrecy outage probability (SOP) are derived for the proposed relay-antenna selection schemes. In order to gain more deep insights on the derived results, the asymptotic performance of the derived SOP is analyzed. In simulations, it is demonstrated that the theoretical results match well with the simulation results and the SOP of the proposed schemes is less than that of the conventional orthogonal multiple access (OMA) scheme obviously.


Sign in / Sign up

Export Citation Format

Share Document