scholarly journals Federated Cloud Storage Management Through Provable Data Possession using Dynamic Audit Protocol

Cloud computing is a technology for sharing the resources for on demand request and for processing the data. It facilitates cloud storage for adopting cloud users with the help of cloud service providers. It enhances need of enterprises by adhering large volume of data to store and owned privately through third party auditors via data centres. The proposed system analyse cloud storage and provide free data storage for computing the data and maintain variety of cloud storage in one place. This scenario promotes storage of files in one system, so the user doesn’t require various accounts like GoogleDrive, Microsoft Onedrive and Dropbox. This application enhances multiple cloud storage for accessing all files in one particular storage area. The proposed system eradicates visiting of multiple sites for downloading the apps and reduces installing of multiple apps for downloading all the files. The work mainly focuses on the SaaS that permits users to upload data and share the resources from the cloud to post in the Web browser. Our work designed for creating single level of Application programming interface which is for all the cloud service providers. This adopts external applications that leverage the service of platform which is easier to build scalable, and automated cloud based applications. The final API promotes multiple cloud storage in one place and leads to provision Federated Cloud

Author(s):  
Vladimir Meikshan ◽  
◽  
Natalia Teslya ◽  

Benefits of using cloud technology are obvious, their application is expanding, as a result, it determines the steady growth of demand. Cloud computing has acquired particular relevance for large companies connected with Internet services, retailing, logistics that generate large volume of business and other information. The use of cloud technologies allows organizing the joint consumption of resources, solving the problems of storing and transferring significant amounts of data. Russian consumer cooperation refers to large territory distributed organizations actively forming their own digital ecosystem. The issue of data storing and processing for consumer coo-peration organizations is very relevant. At the same time, the prices of cloud service providers are significantly different and require solving the problem of minimizing the cost of storing and transferring significant amounts of data. The application of the linear programming method is considered to select the optimal data storage scheme for several cloud service providers having different technical and economic parameters of the package (maximum amount of storage, cost of allocated resources). Mathematical model includes the equation of costs for data storing and transferring and restrictions on the amount of storage, the amount of data and its safety. Software tool that allows to perform numerical calculations is selected Microsoft Excel in combination with the "search for solutions" add-on. In accordance with the mathematical model, the conditions for minimizing the amount of cloud storage costs and the necessary restrictions are established. Initial data are set for three data forming centers, storages of certain size for five cloud service providers and nominal price for information storage and transmission. Calculations of expenses are performed in several variants: without optimization, with the solution of the optimization problem, with price increase by cloud service providers. Results of the calculations confirm the necessity to solve the problem of minimizing the cost of cloud services for corporate clients. The presented model can be expanded for any cost conditions as well as for different areas of cloud applications.


The tradition of moving applications, data to be consumed by the applications and the data generated by the applications is increasing and the increase is due to the advantages of cloud computing. The advantages of cloud computing are catered to the application owners, application consumers and at the same time to the cloud datacentre owners or the cloud service providers also. Since IT tasks are vital for business progression, it for the most part incorporates repetitive or reinforcement segments and framework for power supply, data correspondences associations, natural controls and different security gadgets. An extensive data centre is a mechanical scale task utilizing as much power as a community. The primary advantage of pushing the applications on the cloud-based data centres are low infrastructure maintenance with significant cost reduction for the application owners and the high profitability for the data centre cloud service providers. During the application migration to the cloud data centres, the data and few components of the application become exposed to certain users. Also, the applications, which are hosted on the cloud data centres must comply with the certain standards for being accepted by various application consumers. In order to achieve the standard certifications, the applications and the data must be audited by various auditing companies. Few of the cases, the auditors are hired by the data centre owners and few of times, the auditors are engaged by application consumers. Nonetheless, in both situations, the auditors are third party and the risk of exposing business logics in the applications and the data always persists. Nevertheless, the auditor being a third-party user, the data exposure is a high risk. Also, in a data centre environment, it is highly difficult to ensure isolation of the data from different auditors, who may not be have the right to audit the data. Significant number of researches have attempted to provide a generic solution to this problem. However, the solutions are highly criticized by the research community for making generic assumptions during the permission verification process. Henceforth, this work produces a novel machine learning based algorithm to assign or grant audit access permissions to specific auditors in a random situation without other approvals based on the characteristics of the virtual machine, in which the application and the data is deployed, and the auditing user entity. The results of the proposed algorithm are highly satisfactory and demonstrates nearly 99% accuracy on data characteristics analysis, nearly 98% accuracy on user characteristics analysis and 100% accuracy on secure auditor selection process


Author(s):  
R.Santha Maria Rani ◽  
Dr.Lata Ragha

Cloud computing provides elastic computing and storage resource to users. Because of the characteristic the data is not under user’s control, data security in cloud computing is becoming one of the most concerns in using cloud computing resources. To improve data reliability and availability, Public data auditing schemes is used to verify the outsourced data storage without retrieving the whole data. However, users may not fully trust the cloud service providers (CSPs) because sometimes they might be dishonest. Therefore, to maintain the integrity of cloud data, many auditing schemes have been proposed. In this paper, analysis of various existing auditing schemes with their consequences is discussed.  Keywords: — Third Party Auditor (TPA), Cloud Service Provider (CSP), Merkle-Hash Tree (MHT), Provable data Possession (PDP), Dynamic Hash Table (DHT).


Cloud storage is one of the key features of cloud computing, which helps cloud users outsource large numbers of data without upgrading their devices. However, Cloud Service Providers (CSPs) data storage faces problems with data redundancy. The data deduplication technique aims at eliminating redundant information segments and maintains one single instance of the data set, even if any number of users own similar data set. Since blocks of data are spread on many servers, each block of the file has to be downloaded before restoring the file to decrease system output. We suggest a cloud storage server data recovery module to improve file access efficiency and reduce time spent on network bandwidth. Device coding is used in the suggested method to store blocks in distributed cloud storage, and for data integrity, MD5 (Message Digest 5) is used. Running recovery algorithm helps the user to retrieve a file directly from the cloud servers without downloading every block. The scheme proposed improves system time efficiency and the ability to access the stored data quickly. This reduces bandwidth consumption and reduces overhead user processing while downloading the data file.


2021 ◽  
Vol 13 (4) ◽  
pp. 75-83
Author(s):  
Dharmendra Singh Rajput ◽  
Praveen Kumar Reddy M. ◽  
Ramasubbareddy Somula ◽  
Bharath Bhushan S. ◽  
Ravi Kumar Poluru

Cloud computing is a quickly emerging computing model in the IT industry. Due to the rapid increase in technology, many clients want to store multiple copies of the same data in multiple data centers. Clients are outsourcing the data to cloud service providers and enjoying the high quality of service. Cloud service providers (CSP) are going to charge extra amounts for storing multiple copies; CSP must provide the firm guarantee for storing multiple copies. This paper proposes a new system model for storing and verifying multiple copies; this model deals with identifying tarnished copies which are transparent for the clients. Also, it deals with dynamic data control in the cloud with optimal results.


2019 ◽  
Vol 63 (9) ◽  
pp. 1285-1297 ◽  
Author(s):  
S Mahdavi-Hezavehi ◽  
Y Alimardani ◽  
R Rahmani

Abstract Cloud Service Providers supply services to clients in terms of their demands. They need to be constantly under monitoring for their services with respect to consensus agreements between clients and service providers. A Third Party Auditor or TPA as a trusted organization appears to be necessary to monitor executing agreements of cloud services. Using a third party as an extra component creates cost overheads for clients in a cloud environment. Thus, introducing a cost efficient framework for a cloud environment which includes a third party is an eminent achievement to make a TPA feasible and practical in cloud environments. In this paper, we propose a TPA framework for monitoring service level agreements between cloud service providers and cloud clients using several cloud resources. This framework employs different types of service deployments from various cloud service providers excluding the cloud service provider which is being monitored. Then, we demonstrate that the framework can mitigate costs of a third party auditor in a cloud environment. Simulations of trends for costs exhibits cost efficiency of at least forty percent over ten years when a TPA follows our proposed framework in comparison to other frameworks. Finally, we provide an analysis to compare characteristics of our framework with other frameworks and discuss the advantages of our proposed framework. Our results indicate that TPA as a component of the framework not only reduces overall costs of its presentation in a cloud environment but additionally improves management efficiency and security.


Author(s):  
Sunil Kumar ◽  
Dilip Kumar ◽  
Hemraj Shobharam Lamkuche

Over the last decade, many enterprises around the world migrating from traditional infrastructure to cloud resources in order to cut down operational and capital expenditure. With cloud computing, huge amount of data transactions is communicated between cloud consumers and cloud service providers. However, this cloud computing enables surplus security challenges associated to unauthorized access and data breaches. We proposed in this paper a trusted third-party auditor (TPA) model which uses lightweight cryptographic system and lightweight hashing technique to ensure data security and data integrity to audit the cloud users outsourced data from cloud service providers. With our proposed system, we solve the concern of data reliability using data correctness and verification analysis and error recovery analysis. The time complexity of our proposed system is less as compared with other TPA model. Our proposed system also shows resistance against various known cryptanalytic attacks, the performance and extensive compression technique of our proposed system are probably secure and highly proficient.


Sign in / Sign up

Export Citation Format

Share Document