scholarly journals Coastal Sediment Transport along Kalpakkam using Sediment Trend Exploaration and Numerical Modelling

2019 ◽  
Vol 8 (2S11) ◽  
pp. 3011-3015

The impact of coastal sediment transport in the nearshore region is significant and the need for improved sediment quantification techniques appears to be universally accepted. The coastal sediment transport models presently in use were derived empirically from very sparse measurements of waves and currents and from laboratory experiments. The shoreline of Kadalur fishing villages near Kalpakkam has been experiencing erosion due to occurrence of cyclones every monsoon. Palar River with its confluence in the Bay of Bengal at the northern tip of the Kadalur villages has its mouth closed due to negligible river flow. The purpose of this study is to assess sediment dynamics in the Kalpakkam coast using two independent approaches; namely Sediment Trend Analysis (STA) and two dimensional numerical modelling. The latter can track the movement of individual particles. Numerical modelling approach is based on Delft3D model which allows the coupling of flow and wave modules. STA and numerical modelling results can provide sediment transport direction. The combination of both approaches provides a means of verification of sedimentation processes. The basic assumption in STA is that sediment transport can be responsible for the differences in sediment grain size distributions. For Grain Size Trend Analysis, grab samples were collected throughout the nearshore area. Grain Size Trend Analysis was then carried out and subsequent results were plotted to obtain the sediment transport pattern for the region. The results obtained are compared with the numerical model results and also used for validation of sediment transport evaluated using the numerical model.

2014 ◽  
Vol 93 ◽  
pp. 28-32 ◽  
Author(s):  
Maria Balsinha ◽  
Carlos Fernandes ◽  
Anabela Oliveira ◽  
Aurora Rodrigues ◽  
Rui Taborda

2021 ◽  
Author(s):  
Yu Wang ◽  
Bao-long Li ◽  
Juan-juan Liu ◽  
Qi Feng ◽  
Wei Liu ◽  
...  

Abstract Spatial variations in grain-size parameters can reflect river sediment transport patterns and depositional dynamics. Therefore, 22 surficial sediment samples taken from the Heihe River and its cascade reservoirs were analyzed to better understand the impact of cascade reservoir construction on sediment transport patterns in inland rivers in China. The results showed that the longitudinal distribution of sediment grain size in the Heihe River was significantly affected by the influence of the cascade reservoirs. The grain size of the reservoir sediments within the cascade reservoir system was much lower than that of sediments in the natural river section, and the sediments in the natural river were well sorted, exhibiting leptokurtosis and positive or very positive skew. The lower reaches of the dammed river experienced strong erosion, and the grains of the bed sediments were coarse and poorly sorted; the grain-size distributions were more positively skewed and exhibited leptokurtosis. The backwater zone of the reservoir was influenced by both backwater and released water, and the sediment grain size was between the grain size of the natural river and that of the lower reaches of the dam; these sediments were moderately well sorted and had a positively skewed, leptokurtic grain-size distribution. Sedimentary environmental analysis revealed that the characteristics of the sediment grain size in an upstream tributary of the Heihe River were more influenced by source material than by hydrodynamic conditions, while the grain-size characteristics of the mainstream sediments were controlled mainly by hydrodynamic conditions.


2020 ◽  
Author(s):  
Shuaib Rasheed ◽  
Simon C. Warder ◽  
Yves Plancherel ◽  
Matthew D. Piggott

Abstract. Changes to coastlines and bathymetry alter tidal dynamics and associated sediment transport process, impacting upon a number of threats facing coastal regions, including flood risk and erosion. Especially vulnerable are coral atolls such as those that make up the Maldives archipelago which has undergone significant land reclamation in recent years and decades, and is also particularly exposed to sea level rise. Here we develop a tidal model of Male' Atoll, Maldives, and use it to assess potential changes to sediment grain size distributions under sea level rise and coastline alteration scenarios. The results indicate that the impact of coastline modification over the last two decades at the island scale is not limited to the immediate vicinity of the modified island, but can also significantly impact the sediment grain size distribution across the wider atoll basin. Additionally, the degree of change in sediment distribution which can be associated with sea level rise that is projected to occur over relatively long time periods is predicted to occur over far shorter time periods with coastline changes, highlighting the need to better understand, predict and mitigate the impact of land reclamation and other coastal modifications before conducting such activities.


2019 ◽  
Vol 37 (3) ◽  
pp. 982-997 ◽  
Author(s):  
Xiaoxiao Yu ◽  
Tiegang Li ◽  
Dongqi Gu ◽  
Aiping Feng ◽  
Shihao Liu ◽  
...  

Ocean Science ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 319-334
Author(s):  
Shuaib Rasheed ◽  
Simon C. Warder ◽  
Yves Plancherel ◽  
Matthew D. Piggott

Abstract. Changes to coastlines and bathymetry alter tidal dynamics and associated sediment transport processes, impacting upon a number of threats facing coastal regions, including flood risk and erosion. Especially vulnerable are coral atolls such as those that make up the Maldives archipelago, which has undergone significant land reclamation in recent years and decades and is also particularly exposed to sea level rise. Here we develop a tidal model of Malé Atoll, Maldives, the first atoll-scale and multi-atoll-scale high-resolution numerical model of the atolls of the Maldives and use it to assess potential changes to sediment grain size distributions in the deeper atoll basin, under sea level rise and coastline alteration scenarios. The results indicate that the impact of coastline modification over the last two decades at the island scale is not limited to the immediate vicinity of the modified island but can also significantly impact the sediment grain size distribution across the wider atoll basin. Additionally, the degree of change in sediment distribution which can be associated with sea level rise that is projected to occur over relatively long time periods is predicted to occur over far shorter time periods with coastline changes, highlighting the need to better understand, predict and mitigate the impact of land reclamation and other coastal modifications before conducting such activities.


Sign in / Sign up

Export Citation Format

Share Document