scholarly journals Erosion Wear Behavior of SiC Nano Powder Filled Flax and Sisal Fabric Hybrid Composites with Taguchi Experimental Design

This work is carried out to find out the erosion wear characteristics of unfilled and also SiC nanopowder filled flax and sisal fabric hybrid composites (FSHC). Effect of different parameters such as filler content, impingement angle and erodent size on the erosion wear behavior of hybrid composite has been studied using Taguchi method. Significant control factors altering the erosion rate have been evaluated through outstanding execution ANOVA. The experimental outcomes are recognized to be in acceptable accord with the assumptive values. This study indicates that erosion wear resistance increases as SiC nanopowder increases in FSHC

Author(s):  
SWATI GANGWAR ◽  
VIKAS KUKSHAL ◽  
AMAR PATNAIK ◽  
TEJ SINGH

In this article, micro and nano titania ( TiO2 ) filled A384 alloy composites are fabricated by stir casting technique with varying filler content from 0–8 wt.% respectively and then we study their physical, mechanical, thermal and erosive wear characteristics respectively. Effect of impact velocity (25–70 m/sec) and impingement angle (30°–90°) on erosion wear behavior of micro and nano TiO2 filled A384 alloy has also been studied. Finally, an optimization technique was implemented in order to develop a correlation between the physical, mechanical and erosion rate of TiO2 filled A384 alloy composites by using technique order preference by similarity to ideal solution (TOPSIS).


Author(s):  
Ganesh Kalagi ◽  
Abdulrajak Buradi ◽  
Abdul Razak Kaladgi ◽  
H.K. Madhusudhana ◽  
H. Udaya Prasanna ◽  
...  

2021 ◽  
pp. 1-17
Author(s):  
Vigneshwaran Shanmugam ◽  
M. Uthayakumar ◽  
V. Arumugaprabu ◽  
M.S. Abdul Majid ◽  
R. Deepak Joel Johnson

2010 ◽  
Vol 97-101 ◽  
pp. 1527-1531 ◽  
Author(s):  
Feng Fang Wu ◽  
Jian Xin Deng ◽  
Pei Yan ◽  
Wen Long Song

The erosion wear behavior of TiN coatings with growth defects was studied. The TiN coatings were produced on a hard metal by ion beam enhanced pulsed filtered vacuum cathode arc deposition. The erosion wear was tested with a gas blast apparatus. In the test, TiN coatings were impacted at an impingement angle of 90° by angular SiC solid particles with an average diameter of 124um. The maximum depth of the erosion scar measured by the optical profiler was used to evaluate the erosion wear loss of the coatings. The coatings proved to have much lower erosion rate than that of the substrate material and consequently, the erosion rate increased significantly to the high level of the hard metal substrate after the coatings were penetrated. The failure mechanism was revealed by examining the surface morphologies of the coatings before and after the erosion test. The erosive wear of the TiN coatings with growth defects behaved as typical brittle materials. The damage mechanism of the coatings with growth defects was described.


2016 ◽  
Vol 68 (1) ◽  
pp. 134-140 ◽  
Author(s):  
Mehmet Bagci ◽  
Huseyin Imrek

Purpose – This study aims to examine solid particle erosion behavior of novel hybrid composite materials where borax (B2O3) particles (∼150 μm) were added to glass fabric and epoxy resin at an amount of 15 and 30 per cent. Design/methodology/approach – The tests that involved slightly rounded and irregular Al2O3 particles having two erodent sizes (200, 400 μm) were conducted at these operational conditions; namely, three impact velocities (23, 34, 53 m/s), two fabric directions (0/90/0, 45/−45/45) and three impingement angles (30°, 60°, 90°). In addition, the design of experiments, which utilizes Taguchi’s robust orthogonal arrays approach, was used and an optimum parameter combination was established, which had a minimum erosion rate. Moreover, scanning electron microscope and X-ray diffraction views show the visual effect of filler material. Findings – All test specimens regardless of their dissimilar characteristics displayed maximum erosion rate at 30° impingement angle. Test specimens with 45/−45/45 fabric direction are more wear-resistant than their counterparts with 0/90/0 fabric direction. The erosion wear of glass fabric reinforced epoxy (GF/EP) composites whose matrix had 15 per cent addition of borax particles was higher than that of neat GF/EP composites. In addition, new composite material formed by including borax particles at a rate of 30 per cent of resin leads to a reduction in erosion rates. Originality/value – While fabric-reinforced polymers take place in most of the studies conducted on erosive wear of composites, studies involving erosion on composites with filler materials can hardly be encountered.


Sign in / Sign up

Export Citation Format

Share Document