glass fabric
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 77)

H-INDEX

35
(FIVE YEARS 5)

Author(s):  
Ethan R Pedneau ◽  
Su Su Wang

Abstract Determination of permeability of thick-section glass fabric preforms with fabric layers of different architectures is critical for manufacturing large, thick composite structures with complex geometry, such as wind turbine blades. The thick-section reinforcement permeability is inherently three-dimensional and needs to be obtained for accurate composite processing modeling and analysis. Numerical simulation of the liquid stage of vacuum-assisted resin infusion molding (VARIM) is important to advance the composite manufacturing process and reduce processing-induced defects. In this research, the 3D permeability of thick-section E-glass fabric reinforcement preforms is determined and the results are validated by a comparison between flow front progressions from experiments and from numerical simulations using ANSYS Fluent software. The orientation of the principal permeability axes were unknown prior to experiments. The approach used in this research differs from those in literature in that the through-thickness permeability is determined as a function of flow front positions along the principal axes and the in-plane permeabilities and is not dependent on the inlet radius. The approach was tested on reinforcements with fabric architectures which vary through-the-thickness direction, such as those in a spar cap of a wind turbine blade. The computational simulations of the flow-front progression through-the-thickness were consistent with experimental observations.


2021 ◽  
pp. 115099
Author(s):  
Min-Su Jang ◽  
Woo-Hyeok Jang ◽  
Do-Hyeon Jin ◽  
Won-Ho Choi ◽  
Chun-Gon Kim

2021 ◽  
pp. 002199832110558
Author(s):  
Prasad Shimpi ◽  
Andrey Aniskevich ◽  
Daiva Zeleniakiene

This research work aimed to develop smart multifunctional composites via a process for uniformly dispersing carbon nanotubes (CNT) on an orthogonal three-dimensional (3D) woven glass fabric with minimised filtering effect. These smart composites could detect strain under tensile and flexural loading by the piezoresistive response of the infused CNT network. Conventional vacuum assisted resin transfer moulding was modified to control the infusion of 0.25 wt% CNT on the 3D woven glass fabric by varying the vacuum pressure. Results showed that at 101.3 kPa vacuum pressure, the CNT percolated through the thickness of the orthogonal 3D woven glass fabric while being marginally filtered by the fibres and were suitable for sensing tensile strain, whereas at 30.4 kPa, the CNT were deposited only on the surface of the fabric preform without getting filtered and were suitable for sensing flexural strain.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6087
Author(s):  
Yavuz Caydamli ◽  
Klaus Heudorfer ◽  
Jens Take ◽  
Filip Podjaski ◽  
Peter Middendorf ◽  
...  

In this study, optically transparent glass fiber-reinforced polymers (tGFRPs) were produced using a thermoset matrix and an E-glass fabric. In situ polymerization was combined with liquid composite molding (LCM) techniques both in a resin transfer molding (RTM) mold and a lite-RTM (L-RTM) setup between two glass plates. The RTM specimens were used for mechanical characterization while the L-RTM samples were used for transmittance measurements. Optimization in terms of the number of glass fabric layers, the overall degree of transparency of the composite, and the mechanical properties was carried out and allowed for the realization of high mechanical strength and high-transparency tGFRPs. An outstanding degree of infiltration was achieved maintaining up to 75% transmittance even when using 29 layers of E-glass fabric, corresponding to 50 v. % fiber, using an L-RTM setup. RTM specimens with 44 v. % fiber yielded a tensile strength of 435.2 ± 17.6 MPa, and an E-Modulus of 24.3 ± 0.7 GPa.


Author(s):  
Fengkai Liu ◽  
Zhigang Suo ◽  
Jingda Tang
Keyword(s):  

Textiles ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 387-404
Author(s):  
Marco Carlo Rampini ◽  
Giulio Zani ◽  
Louis Schouler ◽  
Matteo Colombo ◽  
Marco di Prisco

Alkali-resistant (AR) glass textiles are used as the main reinforcement in several composite applications due to their good performance-to-cost ratio. A huge variety of textiles are already present in the market; they differ on various parameters, such as, for example, the filaments’ diameters, the geometry, the type of weaving, or the nature of the impregnation coating. To orient manufacturers towards the production of efficient textiles, the most important aspect is the balance between cost and performance. In this paper, a series of different fabrics designed for textile-reinforced cementitious composites were considered. Performance was assessed by means of uniaxial tensile tests and the results are presented in terms of load vs. displacement. Then, the selected AR-glass textiles were compared in terms of fabric efficiency, targeting the effect of each parameter on the textile capacity. The research here presented is part of a comprehensive campaign aimed at the optimization of glass-fabric-reinforced cementitious composites for structural retrofitting. To better discuss the different solutions tested, at the end, only considering a small number of the investigated textiles, an efficiency evaluation was carried out at the cementitious composite level.


2021 ◽  
pp. 51602
Author(s):  
Muniraju Muralidharan ◽  
Thottyeapalayam Palanisamy Sathishkumar ◽  
Nagarajan Rajini ◽  
Palanisamy Navaneethakrishnan ◽  
Shanmugam Arun Kumar ◽  
...  

2021 ◽  
Vol 31 (3) ◽  
pp. 145-151
Author(s):  
Samer Al Khaddour ◽  
Mohamad Barkat Ibrahim

In this paper, composite and hybrid composite materials were prepared using the hand lay-up method, with carbon, glass, and Kevlar fabrics as the reinforcing materials and epoxy as a matrix. The tensile test was performed to determine the optimal ratio of epoxy resin in carbon fabric/epoxy, glass fabric/epoxy, and Kevlar fabric/epoxy composites in terms of tensile properties. It was found that the optimal ratio of epoxy in terms of tensile properties to impregnate the used Kevlar fabric, glass fabric, and carbon fabric was around 45%wt, 3%wt, and 30 %wt, respectively. The effect of fabric content and stacking sequences, with a fixed epoxy content, on the hybrid composites’ tensile properties were also investigated. The tensile properties of the prepared composites were compared to determine the most favorable preparation conditions for obtaining a hybrid laminate that has high tensile properties and is suitable for a wide range of applications at a low cost.


Sign in / Sign up

Export Citation Format

Share Document