scholarly journals Total and Cototal Domination Number of Some Zero Divisor Graph

The concept of zero divisor graphs of a commutative ring leads to various research topics since it relates both Ring theory and Graph theory. Domination in graphs has its own development in each field it enters. In this paper, We have given few results on Total and cototal domination number of some zero divisor graph on direct product of commutative rings.

2012 ◽  
Vol 55 (1) ◽  
pp. 127-137 ◽  
Author(s):  
John D. LaGrange

AbstractThe zero-divisor graph Γ(R) of a commutative ring R is the graph whose vertices consist of the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy = 0. In this paper, a characterization is provided for zero-divisor graphs of Boolean rings. Also, commutative rings R such that Γ(R) is isomorphic to the zero-divisor graph of a direct product of integral domains are classified, as well as those whose zero-divisor graphs are central vertex complete.


2011 ◽  
Vol 10 (04) ◽  
pp. 665-674
Author(s):  
LI CHEN ◽  
TONGSUO WU

Let p be a prime number. Let G = Γ(R) be a ring graph, i.e. the zero-divisor graph of a commutative ring R. For an induced subgraph H of G, let CG(H) = {z ∈ V(G) ∣N(z) = V(H)}. Assume that in the graph G there exists an induced subgraph H which is isomorphic to the complete graph Kp-1, a vertex c ∈ CG(H), and a vertex z such that d(c, z) = 3. In this paper, we characterize the finite commutative rings R whose graphs G = Γ(R) have this property (called condition (Kp)).


2019 ◽  
Vol 19 (12) ◽  
pp. 2050226 ◽  
Author(s):  
G. Kalaimurugan ◽  
P. Vignesh ◽  
T. Tamizh Chelvam

Let [Formula: see text] be a finite commutative ring without identity. In this paper, we characterize all finite commutative rings without identity, whose zero-divisor graphs are unicyclic, claw-free and tree. Also, we obtain all finite commutative rings without identity and of cube-free order for which the corresponding zero-divisor graph is toroidal.


Author(s):  
Owino Maurice Oduor

Let R be a commutative ring with identity 1 and I is an ideal of R. The zero divisor graph of the ring with respect to ideal has vertices defined as follows: {u ∈ Ic | uv ∈ I for some v ∈ Ic}, where Ic is the complement of I and two distinct vertices are adjacent if and only if their product lies in the ideal. In this note, we investigate the conditions under which the zero divisor graph of the ring with respect to the ideal coincides with the zero divisor graph of the ring modulo the ideal. We also consider a case of Galois ring module idealization and investigate its ideal based zero divisor graph.


2020 ◽  
Vol 12 (1) ◽  
pp. 84-101 ◽  
Author(s):  
S. Pirzada ◽  
M. Aijaz

AbstractLet R be a commutative ring with Z*(R) as the set of non-zero zero divisors. The zero divisor graph of R, denoted by Γ(R), is the graph whose vertex set is Z*(R), where two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we investigate the metric dimension dim(Γ(R)) and upper dimension dim+(Γ(R)) of zero divisor graphs of commutative rings. For zero divisor graphs Γ(R) associated to finite commutative rings R with unity 1 ≠ 0, we conjecture that dim+(Γ(R)) = dim(Γ(R)), with one exception that {\rm{R}} \cong \Pi {\rm\mathbb{Z}}_2^{\rm{n}}, n ≥ 4. We prove that this conjecture is true for several classes of rings. We also provide combinatorial formulae for computing the metric and upper dimension of zero divisor graphs of certain classes of commutative rings besides giving bounds for the upper dimension of zero divisor graphs of rings.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Abdulaziz M. Alanazi ◽  
Mohd Nazim ◽  
Nadeem Ur Rehman

Let A be a commutative ring with unity and let set of all zero divisors of A be denoted by Z A . An ideal ℐ of the ring A is said to be essential if it has a nonzero intersection with every nonzero ideal of A . It is denoted by ℐ ≤ e A . The generalized zero-divisor graph denoted by Γ g A is an undirected graph with vertex set Z A ∗ (set of all nonzero zero-divisors of A ) and two distinct vertices x 1 and x 2 are adjacent if and only if ann x 1 + ann x 2 ≤ e A . In this paper, first we characterized all the finite commutative rings A for which Γ g A is isomorphic to some well-known graphs. Then, we classify all the finite commutative rings A for which Γ g A is planar, outerplanar, or toroidal. Finally, we discuss about the domination number of Γ g A .


2021 ◽  
Vol 28 (03) ◽  
pp. 533-540
Author(s):  
Qiong Liu ◽  
Tongsuo Wu ◽  
Jin Guo

Let [Formula: see text] be a commutative ring and [Formula: see text] be its zero-divisor graph. We completely determine the structure of all finite commutative rings whose zero-divisor graphs have clique number one, two, or three. Furthermore, if [Formula: see text] (each [Formula: see text] is local for [Formula: see text]), we also give algebraic characterizations of the ring [Formula: see text] when the clique number of [Formula: see text] is four.


Author(s):  
Zahra Barati

Let [Formula: see text] be a commutative ring and [Formula: see text] be the zero divisor graph of [Formula: see text]. In this paper, we investigate when the zero divisor graph is a line graph. We completely present all commutative rings which their zero divisor graphs are line graphs. Also, we study when the zero divisor graph is the complement of a line graph.


Author(s):  
Mohammed Authman ◽  
Husam Q. Mohammad ◽  
Nazar H. Shuker

The idempotent divisor graph of a commutative ring R is a graph with vertices set in R* = R-{0}, and any distinct vertices x and y are adjacent if and only if x.y = e, for some non-unit idempotent element e2 = e ϵ R, and is denoted by Л(R). The purpose of this work is using some properties of ring theory and graph theory to find the clique number, the chromatic number and the region chromatic number for every planar idempotent divisor graphs of commutative rings. Also we show the clique number is equal to the chromatic number for any planar idempotent divisor graph. Among other results we prove that: Let Fq, Fpa are fieldes of orders q and pa respectively, where q=2 or 3, p is a prime number and a Is a positive integer. If a ring R @ Fq x Fpa . Then (Л(R))= (Л(R)) = *( Л(R)) = 3.


2015 ◽  
Vol 15 (01) ◽  
pp. 1650014 ◽  
Author(s):  
Rameez Raja ◽  
S. Pirzada ◽  
Shane Redmond

Let R be a commutative ring with identity and let G(V, E) be a graph. The locating number of the graph G(V, E) denoted by loc (G) is the cardinality of the minimal locating set W ⊆ V(G). To get the loc (G), we assign locating codes to the vertices V(G)∖W of G in such a way that every two vertices get different codes. In this paper, we consider the ratio of loc (G) to |V(G)| and show that there is a finite connected graph G with loc (G)/|V(G)| = m/n, where m < n are positive integers. We examine two equivalence relations on the vertices of Γ(R) and the relationship between locating sets and the cut vertices of Γ(R). Further, we obtain bounds for the locating number in zero-divisor graphs of a commutative ring and discuss the relation between locating number, domination number, clique number and chromatic number of Γ(R). We also investigate the locating number in Γ(R) when R is a finite product of rings.


Sign in / Sign up

Export Citation Format

Share Document