On locating numbers and codes of zero divisor graphs associated with commutative rings

2015 ◽  
Vol 15 (01) ◽  
pp. 1650014 ◽  
Author(s):  
Rameez Raja ◽  
S. Pirzada ◽  
Shane Redmond

Let R be a commutative ring with identity and let G(V, E) be a graph. The locating number of the graph G(V, E) denoted by loc (G) is the cardinality of the minimal locating set W ⊆ V(G). To get the loc (G), we assign locating codes to the vertices V(G)∖W of G in such a way that every two vertices get different codes. In this paper, we consider the ratio of loc (G) to |V(G)| and show that there is a finite connected graph G with loc (G)/|V(G)| = m/n, where m < n are positive integers. We examine two equivalence relations on the vertices of Γ(R) and the relationship between locating sets and the cut vertices of Γ(R). Further, we obtain bounds for the locating number in zero-divisor graphs of a commutative ring and discuss the relation between locating number, domination number, clique number and chromatic number of Γ(R). We also investigate the locating number in Γ(R) when R is a finite product of rings.

2012 ◽  
Vol 11 (06) ◽  
pp. 1250114 ◽  
Author(s):  
MENG YE ◽  
TONGSUO WU

In this paper, a new kind of graph on a commutative ring R with identity, namely the co-maximal ideal graph is defined and studied. We use [Formula: see text] to denote this graph, with its vertices the proper ideals of R which are not contained in the Jacobson radical of R, and two vertices I1 and I2 are adjacent if and only if I1 + I2 = R. We show some properties of this graph. For example, this graph is a simple, connected graph with diameter less than or equal to three, and both the clique number and the chromatic number of the graph are equal to the number of maximal ideals of the ring R.


2021 ◽  
Vol 28 (03) ◽  
pp. 533-540
Author(s):  
Qiong Liu ◽  
Tongsuo Wu ◽  
Jin Guo

Let [Formula: see text] be a commutative ring and [Formula: see text] be its zero-divisor graph. We completely determine the structure of all finite commutative rings whose zero-divisor graphs have clique number one, two, or three. Furthermore, if [Formula: see text] (each [Formula: see text] is local for [Formula: see text]), we also give algebraic characterizations of the ring [Formula: see text] when the clique number of [Formula: see text] is four.


The concept of zero divisor graphs of a commutative ring leads to various research topics since it relates both Ring theory and Graph theory. Domination in graphs has its own development in each field it enters. In this paper, We have given few results on Total and cototal domination number of some zero divisor graph on direct product of commutative rings.


2015 ◽  
Vol 97 (111) ◽  
pp. 225-231 ◽  
Author(s):  
Reza Nikandish ◽  
Hamid Maimani ◽  
Sima Kiani

Let R be a commutative ring with identity and A(R) be the set of ideals with nonzero annihilator. The annihilating-ideal graph of R is defined as the graph AG(R) with the vertex set A(R)* = A(R)\{0} and two distinct vertices I and J are adjacent if and only if IJ = 0. In this paper, we study the domination number of AG(R) and some connections between the domination numbers of annihilating-ideal graphs and zero-divisor graphs are given.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2011 ◽  
Vol 10 (04) ◽  
pp. 665-674
Author(s):  
LI CHEN ◽  
TONGSUO WU

Let p be a prime number. Let G = Γ(R) be a ring graph, i.e. the zero-divisor graph of a commutative ring R. For an induced subgraph H of G, let CG(H) = {z ∈ V(G) ∣N(z) = V(H)}. Assume that in the graph G there exists an induced subgraph H which is isomorphic to the complete graph Kp-1, a vertex c ∈ CG(H), and a vertex z such that d(c, z) = 3. In this paper, we characterize the finite commutative rings R whose graphs G = Γ(R) have this property (called condition (Kp)).


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


2019 ◽  
Vol 19 (12) ◽  
pp. 2050226 ◽  
Author(s):  
G. Kalaimurugan ◽  
P. Vignesh ◽  
T. Tamizh Chelvam

Let [Formula: see text] be a finite commutative ring without identity. In this paper, we characterize all finite commutative rings without identity, whose zero-divisor graphs are unicyclic, claw-free and tree. Also, we obtain all finite commutative rings without identity and of cube-free order for which the corresponding zero-divisor graph is toroidal.


Sign in / Sign up

Export Citation Format

Share Document