scholarly journals Implications of Deep Learning-Based Methods for Face Recognition in Online Examination System

2019 ◽  
Vol 8 (3) ◽  
pp. 1204-1208

In the recent era, the importance of surveillance-related applications is increasing rapidly. In such applications, Face Recognition is becoming an emerging, fast-growing research field in the security authentication systems. Face recognition becomes one of the biometric techniques for identifying individuals face in digital images or in the stored image. It has various applications in biometrics, military, video surveillance and so on. In an earlier age, face recognition techniques implemented using a traditional approach like holistic based, hybrid and feature-based. In the traditional system, there are a number of issues like light illumination, occlusion problem, different facial expressions, and poses of the particular individual. These factors are affecting the accuracy and efficiency of the face recognition system. Nowadays there is an advancement in the technology and methods which are used in the face recognition system. The new methods and techniques of face recognition are devised by deep learning methods. The research focuses on a proposed model developed by using some Deep Learning methods and frameworks for face recognition. This model plays an important role in the authentication of an individual in the online examination system in educational institutes. Multi-level authentication is used for authenticating individual and to have crosschecked over throughout the examination period. The Deep Learning methods and frameworks overcome the issues raised in face recognition by traditional methods. This proposed model used for the authentication of an individual in educational institutes where online examinations are conducted.

Author(s):  
Edy Winarno ◽  
Agus Harjoko ◽  
Aniati Murni Arymurthy ◽  
Edi Winarko

<p>The main problem in face recognition system based on half-face pattern is how to anticipate poses and illuminance variations to improve recognition rate. To solve this problem, we can use two lenses on stereo vision camera in face recognition system. Stereo vision camera has left and right lenses that can be used to produce a 2D image of each lens. Stereo vision camera in face recognition has capability to produce two of 2D face images with a different angle. Both angle of the face image will produce a detailed image of the face and better lighting levels on each of the left and right lenses. In this study, we proposed a face recognition technique, using 2 lens on a stereo vision camera namely symmetrical half-join. Symmetrical half-join is a method of normalizing the image of the face detection on each of the left and right lenses in stereo vision camera, then cropping and merging at each image. Tests on face recognition rate based on the variety of poses and variations in illumination shows that the symmetrical half-join method is able to provide a high accuracy of face recognition and can anticipate variations in given pose and illumination variations. The proposed model is able to produce 86% -97% recognition rate on a variety of poses and variations in angles between 0 °- 22.5 °. The variation of illuminance measured using a lux meter can result in 90% -100% recognition rate for the category of at least dim lighting levels (above 10 lux).</p>


2019 ◽  
Vol 8 (4) ◽  
pp. 3111-3116

Face recognition, the fastest growing biometric technology of computer vision, made a breakthrough in the field of security, healthcare, access control and marketing etc. This technology helps in automatically discern and identify the faces for authentication by comparing available digital image of faces. Various algorithms have been developed for enhancing the performance of face recognition system. The face authentication system entails three major steps, face detection, feature extraction and face recognition. This paper provides some of the major milestones of face representation for recognition like holistic learning approach, feature based approach, hybrid approach and deep learning approach. The various techniques under these categories are reviewed. Finally, implemented face recognition using convolution neural network (CNN). In this method, the image is captured through webcam for the dataset preparation. The detection is carried out by CNN cascade, followed by face landmark and face embedding by FaceNet CNN. Recognition of face is performed after training the network. Implemented faces recognition successfully and accurately for smaller dataset.


Author(s):  
Jayanthi Raghavan ◽  
Majid Ahmadi

In this work, deep CNN based model have been suggested for face recognition. CNN is employed to extract unique facial features and softmax classifier is applied to classify facial images in a fully connected layer of CNN. The experiments conducted in Extended YALE B and FERET databases for smaller batch sizes and low value of learning rate, showed that the proposed model has improved the face recognition accuracy. Accuracy rates of up to 96.2% is achieved using the proposed model in Extended Yale B database. To improve the accuracy rate further, preprocessing techniques like SQI, HE, LTISN, GIC and DoG are applied to the CNN model. After the application of preprocessing techniques, the improved accuracy of 99.8% is achieved with deep CNN model for the YALE B Extended Database. In FERET Database with frontal face, before the application of preprocessing techniques, CNN model yields the maximum accuracy of 71.4%. After applying the above-mentioned preprocessing techniques, the accuracy is improved to 76.3%.


2021 ◽  
Author(s):  
Jayanthi Raghavan ◽  
Majid Ahmadi

In this work, deep CNN based model have been suggested for face recognition. CNN is employed to extract unique facial features and softmax classifier is applied to classify facial images in a fully connected layer of CNN. The experiments conducted in Extended YALE B and FERET databases for smaller batch sizes and low value of learning rate, showed that the proposed model has improved the face recognition accuracy. Accuracy rates of up to 96.2% is achieved using the proposed model in Extended Yale B database. To improve the accuracy rate further, preprocessing techniques like SQI, HE, LTISN, GIC and DoG are applied to the CNN model. After the application of preprocessing techniques, the improved accuracy of 99.8% is achieved with deep CNN model for the YALE B Extended Database. In FERET Database with frontal face, before the application of preprocessing techniques, CNN model yields the maximum accuracy of 71.4%. After applying the above-mentioned preprocessing techniques, the accuracy is improved to 76.3%.


Author(s):  
Edy Winarno ◽  
Agus Harjoko ◽  
Aniati Murni Arymurthy ◽  
Edi Winarko

<p>The main problem in face recognition system based on half-face pattern is how to anticipate poses and illuminance variations to improve recognition rate. To solve this problem, we can use two lenses on stereo vision camera in face recognition system. Stereo vision camera has left and right lenses that can be used to produce a 2D image of each lens. Stereo vision camera in face recognition has capability to produce two of 2D face images with a different angle. Both angle of the face image will produce a detailed image of the face and better lighting levels on each of the left and right lenses. In this study, we proposed a face recognition technique, using 2 lens on a stereo vision camera namely symmetrical half-join. Symmetrical half-join is a method of normalizing the image of the face detection on each of the left and right lenses in stereo vision camera, then cropping and merging at each image. Tests on face recognition rate based on the variety of poses and variations in illumination shows that the symmetrical half-join method is able to provide a high accuracy of face recognition and can anticipate variations in given pose and illumination variations. The proposed model is able to produce 86% -97% recognition rate on a variety of poses and variations in angles between 0 °- 22.5 °. The variation of illuminance measured using a lux meter can result in 90% -100% recognition rate for the category of at least dim lighting levels (above 10 lux).</p>


2022 ◽  
Author(s):  
Hang Du ◽  
Hailin Shi ◽  
Dan Zeng ◽  
Xiao-Ping Zhang ◽  
Tao Mei

Face recognition is one of the most popular and long-standing topics in computer vision. With the recent development of deep learning techniques and large-scale datasets, deep face recognition has made remarkable progress and been widely used in many real-world applications. Given a natural image or video frame as input, an end-to-end deep face recognition system outputs the face feature for recognition. To achieve this, a typical end-to-end system is built with three key elements: face detection, face alignment, and face representation. The face detection locates faces in the image or frame. Then, the face alignment is proceeded to calibrate the faces to the canonical view and crop them with a normalized pixel size. Finally, in the stage of face representation, the discriminative features are extracted from the aligned face for recognition. Nowadays, all of the three elements are fulfilled by the technique of deep convolutional neural network. In this survey article, we present a comprehensive review about the recent advance of each element of the end-to-end deep face recognition, since the thriving deep learning techniques have greatly improved the capability of them. To start with, we present an overview of the end-to-end deep face recognition. Then, we review the advance of each element, respectively, covering many aspects such as the to-date algorithm designs, evaluation metrics, datasets, performance comparison, existing challenges, and promising directions for future research. Also, we provide a detailed discussion about the effect of each element on its subsequent elements and the holistic system. Through this survey, we wish to bring contributions in two aspects: first, readers can conveniently identify the methods which are quite strong-baseline style in the subcategory for further exploration; second, one can also employ suitable methods for establishing a state-of-the-art end-to-end face recognition system from scratch.


2014 ◽  
Vol 971-973 ◽  
pp. 1710-1713
Author(s):  
Wen Huan Wu ◽  
Ying Jun Zhao ◽  
Yong Fei Che

Face detection is the key point in automatic face recognition system. This paper introduces the face detection algorithm with a cascade of Adaboost classifiers and how to configure OpenCV in MCVS. Using OpenCV realized the face detection. And a detailed analysis of the face detection results is presented. Through experiment, we found that the method used in this article has a high accuracy rate and better real-time.


Now a days one of the critical factors that affects the recognition performance of any face recognition system is partial occlusion. The paper addresses face recognition in the presence of sunglasses and scarf occlusion. The face recognition approach that we proposed, detects the face region that is not occluded and then uses this region to obtain the face recognition. To segment the occluded and non-occluded parts, adaptive Fuzzy C-Means Clustering is used and for recognition Minimum Cost Sub-Block Matching Distance(MCSBMD) are used. The input face image is divided in to number of sub blocks and each block is checked if occlusion present or not and only from non-occluded blocks MWLBP features are extracted and are used for classification. Experiment results shows our method is giving promising results when compared to the other conventional techniques.


Sign in / Sign up

Export Citation Format

Share Document