scholarly journals Implementation of NN controlled DVR for Enhancing The Power Quality By Mitigating Harmonics

Author(s):  
Abirami Periaswamy ◽  
Merin Lizbeth George

<p>Now a days there is a widespread use of  semiconductor devices, which are mostly implemented as the power switches for converters and inverters. These converters and inverters play a vital role in power systems both in transmission and distribution systems. This provides a way for the introduction of harmonics in the power system which leads to poor power quality. To overcome this many solutions have been suggested by the research community but each solution holds its own merits and demerits. Of all these suggested solutions, the Dynamic Voltage Restorer is one of the most cost effective systems for various power quality issues. In this paper the DVR is considered for enhancing the power quality by reducing the harmonics generated because of sensitive loads. Here the power quality is enhanced by controlling the DVR using Neural Network Controller which is trained by Levenberg Marquardt algorithm. In this paper the THD analysis of the voltage quantity is analysed by introducing an unbalanced three phase fault in the system. The simulation is done by using MATLAB/Simulink. From the results, it is verified that the harmonics are reduced by the NN controlled DVR unit. Also the simulation results are verified with the hardware results. </p>

2019 ◽  
Vol 8 (3) ◽  
pp. 7366-7369

Power quality has been an issue in electrical power systems. Disturbances occur in power quality which effects machines, some electric devices and severe cause will get very serious damages. For normal and efficient operation it’s necessary to compensate and acknowledge every type of the disturbances at earlier time of the power system. Many sorts of Custom Power Devices (CPD’s) are used to resolve these issues .Here at present, one in every of those devices, Dynamic Voltage restorer (DVR) is conferred. In power distribution systems this is often best and effective device employed. During this project new structure and control methodology of multifunctional DVRs for voltage quality correction are mentioned. Proportional Integral Controller and Fuzzy Logic Controller are used for the PQ improvement. The performance of the device and Total Harmonic Distortion is compared with each other. The performance of the device like voltage swell, sag is projected.


2016 ◽  
Vol 17 (3) ◽  
pp. 277-285 ◽  
Author(s):  
Tejinder Singh Saggu ◽  
Lakhwinder Singh

Abstract Induction furnaces are used in wide quantity under different capacities for annual production of around 25 million tons of iron and steel in India. It plays a vital role in various manufacturing processes around the world for melting different types of metal scraps i. e. Copper, Cast Iron, Aluminium, Steel, Brass, Bronze, Silicon, Gold, Silver etc. which are further used in many other industrial applications. The induction furnace causes a huge disturbance to the utility and nearby consumers during its operation due to its non-linear characteristics. This is a serious phenomenon responsible for power quality degradation in the power system. This paper presents methodology to improve the power quality degradation caused by induction furnace using Dynamic Voltage Restorer (DVR) which is a type of custom power device. The real time data has been taken from an industry employing induction furnace for production of ingots from scrap material. The experimental readings are measured using power quality analyser equipment. The simulation of whole plant is done by analysing this same data and the simulation results are compared with actual onsite results. Then, solution methodology using DVR is presented which revealed that the implementation of DVR is an effective solution for voltage sag mitigation and harmonics improvement in induction furnace.


2020 ◽  
Vol 10 (4) ◽  
pp. 5889-5895
Author(s):  
A. H. Soomro ◽  
A. S. Larik ◽  
M. A. Mahar ◽  
A. A. Sahito ◽  
I. A. Sohu

Power quality problems are becoming a major issue. Every utility company consumer desires to receive steady-state voltage, i.e. a sinusoidal waveform of constant frequency as generated at power stations, but the influence of disturbances in the shape of sags and swells, interruptions, transients and harmonic distortions which affect power quality, resulting in loss of data, damaged equipment, and augmented cost. The most powerful voltage disturbance is the sag voltage. In this paper, a Dynamic Voltage Restorer (DVR) is proposed for sag voltage compensation. It is cost-effective and protects critical loads in a good manner from balanced or unbalanced sag voltage. Control strategy (such as a PI controller) is adopted with DVR topology and the performance of such a device with the proposed controller is analyzed through simulation in MATLAB/Simulink. Three types of faults are utilized, which are available in MATLAB/Simulink pack, for obtaining the sag voltage. The specific range of total harmonic distortion percentage is also discussed. After the result validation of the DVR topology in MATLAB/Simulink, it has been seen that the proposed topology is able to compensate the sag voltage of any type of fault and reduce the unbalancing and voltage distortions of the grid.


Author(s):  
Jose M. Lozano ◽  
Juan M. Ramirez

A dynamic voltage restorer (DVR) based on an AC-AC converter is presented. It is able to compensate different common disturbances in distribution systems, with the purpose of improving the power quality delivered to the users. A prototype has been assembled to test the feasibility of the proposition. In this paper a modulation strategy based on the well known space vector modulation (SVM) algorithm is presented in order to synthesize controllable voltages in magnitude and waveform for compensation purposes. Unbalanced and harmonic distortion conditions in the supply voltages are taken into account. These results positively confirm the design, simulation, assembling, and expectations about the device.


Author(s):  
Mahmoud Zadehbagheri ◽  
Rahim Ildarabadi ◽  
Majid Baghaei Nejad ◽  
Tole Sutikno

<p>Power distribution networks are considered the main link between power industry and consumers and they are exposed to public judgment and evaluation more than any other section. Thus, it is essential to study power quality in distribution section. On the other hand, power distribution networks have always been exposed to traditional factors such as  voltage sag, voltage swell, harmonics and capacitor switching which destruct sinusoidal waveforms and decrease power quality as well as network reliability. One of the methods by which power quality problems might be addressed is to apply power electronic devices in the form of custom power devices. One of such devices is Dynamic Voltage Restorer (DVR) which is connected in series to distribution networks. At the same time, through injection of voltage to the network it is able to control voltage amplitude and phase. It is  adopted lend to compensate for voltage sags through injecting series and synchronous three phase voltage. This paper reviews on the application of DVR for Voltage Compensation in recent years and gives sets of information for each control of the DVR in distribution networks.</p>


Author(s):  
Tamilvanan G. ◽  
Mahendran S.

<p>The maintain power quality is one of the major part of all kind of industry as well as power systems. Voltage sag and voltage swell the common power quality issue. The Dynamic Voltage Restorer is the common Device which is used to mitigate the above problems. In this paper provides review on various type of AC-AC converter based DVR. The use of AC-AC converter can compensate the voltage sag and swell without need of any kind of storage elements like capacitor and batteries. The absence of storage elements can reduce size and weight of the DVR. The feature various type of AC- AC converters based DVR is concentrated in this paper.</p>


Sign in / Sign up

Export Citation Format

Share Document