scholarly journals HALF LOGISTIC MODIFIED EXPONENTIAL DISTRIBUTION: PROPERTIES AND APPLICATIONS

Author(s):  
Arun Kumar Chaudhary ◽  
Vijay Kumar

In this study, we have introduced a three-parameter probabilistic model established from type I half logistic-Generating family called half logistic modified exponential distribution. The mathematical and statistical properties of this distribution are also explored. The behavior of probability density, hazard rate, and quantile functions are investigated. The model parameters are estimated using the three well known estimation methods namely maximum likelihood estimation (MLE), least-square estimation (LSE) and Cramer-Von-Mises estimation (CVME) methods. Further, we have taken a real data set and verified that the presented model is quite useful and more flexible for dealing with a real data set. KEYWORDS— Half-logistic distribution, Estimation, CVME ,LSE, , MLE

In this paper, we have defined a new two-parameter new Lindley half Cauchy (NLHC) distribution using Lindley-G family of distribution which accommodates increasing, decreasing and a variety of monotone failure rates. The statistical properties of the proposed distribution such as probability density function, cumulative distribution function, quantile, the measure of skewness and kurtosis are presented. We have briefly described the three well-known estimation methods namely maximum likelihood estimators (MLE), least-square (LSE) and Cramer-Von-Mises (CVM) methods. All the computations are performed in R software. By using the maximum likelihood method, we have constructed the asymptotic confidence interval for the model parameters. We verify empirically the potentiality of the new distribution in modeling a real data set.


Author(s):  
Parisa Torkaman

The generalized inverted exponential distribution is introduced as a lifetime model with good statistical properties. This paper, the estimation of the probability density function and the cumulative distribution function of with five different estimation methods: uniformly minimum variance unbiased(UMVU), maximum likelihood(ML), least squares(LS), weighted least squares (WLS) and percentile(PC) estimators are considered. The performance of these estimation procedures, based on the mean squared error (MSE) by numerical simulations are compared. Simulation studies express that the UMVU estimator performs better than others and when the sample size is large enough the ML and UMVU estimators are almost equivalent and efficient than LS, WLS and PC. Finally, the result using a real data set are analyzed.


2017 ◽  
Vol 7 (1) ◽  
pp. 72 ◽  
Author(s):  
Lamya A Baharith

Truncated type I generalized logistic distribution has been used in a variety of applications. In this article, a new bivariate truncated type I generalized logistic (BTTGL) distributional models driven from three different copula functions are introduced. A study of some properties is illustrated. Parametric and semiparametric methods are used to estimate the parameters of the BTTGL models. Maximum likelihood and inference function for margin estimates of the BTTGL parameters are compared with semiparametric estimates using real data set. Further, a comparison between BTTGL, bivariate generalized exponential and bivariate exponentiated Weibull models is conducted using Akaike information criterion and the maximized log-likelihood. Extensive Monte Carlo simulation study is carried out for different values of the parameters and different sample sizes to compare the performance of parametric and semiparametric estimators based on relative mean square error.


Author(s):  
Hanan Haj AHmad ◽  
Ehab Almetwally

A new generalization of generalized Pareto Distribution is obtained using the generator Marshall-Olkin distribution (1997). The new distribution MOGP is more flexible and can be used to model non-monotonic failure rate functions. MOGP includes six different sub models: Generalized Pareto, Exponential, Uniform, Pareto type I, Marshall-Olkin Pareto and Marshall-Olkin exponential distribution. We consider different estimation procedures for estimating the model parameters, namely: Maximum likelihood estimator, Maximum product spacing, Least square method, weighted least square method and Bayesian Method. The Bayesian Method is considered under quadratic loss function and Linex loss function. Simulation analysis using MCMC technique is performed to compare between the proposed point estimation methods. The usefulness of MOGP is illustrated by means of real data set, which shows that this generalization is better fit than Pareto, GP and MOP distributions.


2017 ◽  
Vol 5 (4) ◽  
pp. 1
Author(s):  
I. E. Okorie ◽  
A. C. Akpanta ◽  
J. Ohakwe ◽  
D. C. Chikezie ◽  
C. U. Onyemachi ◽  
...  

This paper introduces a new generator of probability distribution-the adjusted log-logistic generalized (ALLoG) distribution and a new extension of the standard one parameter exponential distribution called the adjusted log-logistic generalized exponential (ALLoGExp) distribution. The ALLoGExp distribution is a special case of the ALLoG distribution and we have provided some of its statistical and reliability properties. Notably, the failure rate could be monotonically decreasing, increasing or upside-down bathtub shaped depending on the value of the parameters $\delta$ and $\theta$. The method of maximum likelihood estimation was proposed to estimate the model parameters. The importance and flexibility of he ALLoGExp distribution was demonstrated with a real and uncensored lifetime data set and its fit was compared with five other exponential related distributions. The results obtained from the model fittings shows that the ALLoGExp distribution provides a reasonably better fit than the one based on the other fitted distributions. The ALLoGExp distribution is therefore ecommended for effective modelling of lifetime data sets.


2021 ◽  
Vol 8 (1) ◽  
pp. 01-09
Author(s):  
Sanku Dey ◽  
Mahendra Saha ◽  
Sankar Goswami

This paper addresses the different methods of estimation of the unknown parameter of one parameter A(α) distribution from the frequentist point of view. We briefly describe different approaches, namely, maximum likelihood estimator, least square and weighted least square estimators, maximum product spacing estimators, Cram´er-von Mises estimator and compare those using extensive numerical simulations. Next, we obtain parametric bootstrap confidence interval of the parameter using frequentist approaches. Finally, one real data set has been analysed for illustrative purposes.


2018 ◽  
Vol 33 (1) ◽  
pp. 31-43
Author(s):  
Bol A. M. Atem ◽  
Suleman Nasiru ◽  
Kwara Nantomah

Abstract This article studies the properties of the Topp–Leone linear exponential distribution. The parameters of the new model are estimated using maximum likelihood estimation, and simulation studies are performed to examine the finite sample properties of the parameters. An application of the model is demonstrated using a real data set. Finally, a bivariate extension of the model is proposed.


2018 ◽  
Vol 7 (2) ◽  
pp. 12 ◽  
Author(s):  
Boikanyo Makubate ◽  
Broderick O. Oluyede ◽  
Gofaone Motobetso ◽  
Shujiao Huang ◽  
Adeniyi F. Fagbamigbe

A new family of generalized distributions called the beta Weibull-G (BWG) distribution is proposed and developed. This new class of distributions has several new and well known distributions including exponentiated-G, Weibull-G, Rayleigh-G, exponential-G, beta exponential-G, beta Rayleigh-G, beta Rayleigh exponential, beta-exponential-exponential, Weibull-log-logistic distributions, as well as several other distributions such as beta Weibull-Uniform, beta Rayleigh-Uniform, beta exponential-Uniform, beta Weibull-log logistic and beta Weibull-exponential distributions as special cases. Series expansion of the density function, hazard function, moments, mean deviations, Lorenz and Bonferroni curves, R\'enyi entropy, distribution of order statistics and maximum likelihood estimates of the model parameters are given. Application of the model to real data set is presented to illustrate the importance and usefulness of the special case beta Weibull-log-logistic distribution.


2017 ◽  
Vol 6 (3) ◽  
pp. 24 ◽  
Author(s):  
Gauss M. Cordeiro ◽  
Thiago A. N. De Andrade ◽  
Marcelo Bourguignon ◽  
Frank Gomes-Silva

We study a new two-parameter lifetime model called the exponentiated generalized standardized half-logistic distribution, which extends the half-logistic pioneered by Balakrishnan in the eighties. We provide explicit expressions for the moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves, and order statistics. The model parameters are estimated by the maximum likelihood method. A simulation study reveals that the estimators have desirable properties such as small biases and variances even in moderate sample sizes. We prove empirically that the new distribution provides a better fit to a real data set than other competitive models.


2020 ◽  
Vol 4 (2) ◽  
pp. 327-340
Author(s):  
Ahmed Ali Hurairah ◽  
Saeed A. Hassen

In this paper, we introduce a new family of continuous distributions called the beta transmuted Dagum distribution which extends the beta and transmuted familys. The genesis of the beta distribution and transmuted map is used to develop the so-called beta transmuted Dagum (BTD) distribution. The hazard function, moments, moment generating function, quantiles and stress-strength of the beta transmuted Dagum distribution (BTD) are provided and discussed in detail. The method of maximum likelihood estimation is used for estimating the model parameters. A simulation study is carried out to show the performance of the maximum likelihood estimate of parameters of the new distribution. The usefulness of the new model is illustrated through an application to a real data set.


Sign in / Sign up

Export Citation Format

Share Document