scholarly journals Handwriting Recognition using Deep Learning based Convolutional Neural Network

2019 ◽  
Vol 8 (4) ◽  
pp. 4826-4828

Handwriting is a learned skill that had been an excellent means of communication and documentation for thousands of years. The simple way to communicate with the computers is through either speech or handwriting. Speech has some limitation; hence input through handwriting is recommended. It is difficult to input data for computers for Indian language scripts because of their com-plex character set. This paper focuses on exploring convolutional neural networks (CNN) which is deep learning based for the recognition of handwritten script. The proposed method has shown 99% for handwritten English numerals and promising recognition accuracy for Kannada numerals.

2019 ◽  
Author(s):  
Dan MacLean

AbstractGene Regulatory networks that control gene expression are widely studied yet the interactions that make them up are difficult to predict from high throughput data. Deep Learning methods such as convolutional neural networks can perform surprisingly good classifications on a variety of data types and the matrix-like gene expression profiles would seem to be ideal input data for deep learning approaches. In this short study I compiled training sets of expression data using the Arabidopsis AtGenExpress global stress expression data set and known transcription factor-target interactions from the Arabidopsis PLACE database. I built and optimised convolutional neural networks with a best model providing 95 % accuracy of classification on a held-out validation set. Investigation of the activations within this model revealed that classification was based on positive correlation of expression profiles in short sections. This result shows that a convolutional neural network can be used to make classifications and reveal the basis of those calssifications for gene expression data sets, indicating that a convolutional neural network is a useful and interpretable tool for exploratory classification of biological data. The final model is available for download and as a web application.


In this Research study image identifications will be done by the help of Advanced CNN (Convolutional Neural Networks with Tensorflow Framework. Here we use Python as a main programming language because Tensorflow is a python library. In this study input data mainly focuses on Plants categories by the help of leaves for identifications. Selecting CNN is the best approach for the training and testing data because it produces promising and continuously improving results on automated plant identifications. Here results are divided in terms of accuracy and time. Using advanced CNN results are above 95% while on others accuracy is below 90% and taking much time than this.


2021 ◽  
Vol 5 (3) ◽  
pp. 584-593
Author(s):  
Naufal Hilmiaji ◽  
Kemas Muslim Lhaksmana ◽  
Mahendra Dwifebri Purbolaksono

especially with the advancement of deep learning methods for text classification. Despite some effort to identify emotion on Indonesian tweets, its performance evaluation results have not achieved acceptable numbers. To solve this problem, this paper implements a classification model using a convolutional neural network (CNN), which has demonstrated expected performance in text classification. To easily compare with the previous research, this classification is performed on the same dataset, which consists of 4,403 tweets in Indonesian that were labeled using five different emotion classes: anger, fear, joy, love, and sadness. The performance evaluation results achieve the precision, recall, and F1-score at respectively 90.1%, 90.3%, and 90.2%, while the highest accuracy achieves 89.8%. These results outperform previous research that classifies the same classification on the same dataset.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 189
Author(s):  
Feng Liu ◽  
Xuan Zhou ◽  
Xuehu Yan ◽  
Yuliang Lu ◽  
Shudong Wang

Steganalysis is a method to detect whether the objects contain secret messages. With the popularity of deep learning, using convolutional neural networks (CNNs), steganalytic schemes have become the chief method of combating steganography in recent years. However, the diversity of filters has not been fully utilized in the current research. This paper constructs a new effective network with diverse filter modules (DFMs) and squeeze-and-excitation modules (SEMs), which can better capture the embedding artifacts. As the essential parts, combining three different scale convolution filters, DFMs can process information diversely, and the SEMs can enhance the effective channels out from DFMs. The experiments presented that our CNN is effective against content-adaptive steganographic schemes with different payloads, such as S-UNIWARD and WOW algorithms. Moreover, some state-of-the-art methods are compared with our approach to demonstrate the outstanding performance.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012056
Author(s):  
Hongli Ma ◽  
Fang Xie ◽  
Tao Chen ◽  
Lei Liang ◽  
Jie Lu

Abstract Convolutional neural network is a very important research direction in deep learning technology. According to the current development of convolutional network, in this paper, convolutional neural networks are induced. Firstly, this paper induces the development process of convolutional neural network; then it introduces the structure of convolutional neural network and some typical convolutional neural networks. Finally, several examples of the application of deep learning is introduced.


Deep learning gives the strength on the way to train algorithms model that can handle the difficulties of info classification also prediction grounded on totally on arising information as of raw information. Convolutional Neural Networks (CNNs) gives single often used method for image classification and detection. In this exertion, we define a CNNbased approach for spotting dogs in per chance complex images and due to this fact reflect inconsideration on the identification of the one of kinds of dog breed. The experimental outcome analysis supported the standard metrics and thus the graphical representation confirms that the algorithm (CNN) gives good analysis accuracy for all the tested datasets


2020 ◽  
Vol 69 (1) ◽  
pp. 378-383
Author(s):  
T.A. Nurmukhanov ◽  
◽  
B.S. Daribayev ◽  

Using neural networks, various variations of the classification of objects can be performed. Neural networks are used in many areas of recognition. A big area in this area is text recognition. The paper considers the optimal way to build a network for text recognition, the use of optimal methods for activation functions, and optimizers. Also, the article checked the correctness of text recognition with different optimization methods. This article is devoted to the analysis of convolutional neural networks. In the article, a convolutional neural network model will be trained with a teacher. Teaching with a teacher is a type of training for neural networks in which you provide the input data and the desired result, that is, the student looking at the input data will understand that you need to strive for the result that was provided to him.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Emre Kiyak ◽  
Gulay Unal

Purpose The paper aims to address the tracking algorithm based on deep learning and four deep learning tracking models developed. They compared with each other to prevent collision and to obtain target tracking in autonomous aircraft. Design/methodology/approach First, to follow the visual target, the detection methods were used and then the tracking methods were examined. Here, four models (deep convolutional neural networks (DCNN), deep convolutional neural networks with fine-tuning (DCNNFN), transfer learning with deep convolutional neural network (TLDCNN) and fine-tuning deep convolutional neural network with transfer learning (FNDCNNTL)) were developed. Findings The training time of DCNN took 9 min 33 s, while the accuracy percentage was calculated as 84%. In DCNNFN, the training time of the network was calculated as 4 min 26 s and the accuracy percentage was 91%. The training of TLDCNN) took 34 min and 49 s and the accuracy percentage was calculated as 95%. With FNDCNNTL, the training time of the network was calculated as 34 min 33 s and the accuracy percentage was nearly 100%. Originality/value Compared to the results in the literature ranging from 89.4% to 95.6%, using FNDCNNTL, better results were found in the paper.


2019 ◽  
pp. 47-52
Author(s):  
R. Yu. Belorutsky ◽  
S. V. Zhitnik

The problem of recognizing a human speech in the form of digits from one to ten recorded by dictaphone is considered. The method of the sound signal spectrogram recognition by means of convolutional neural networks is used. The algorithms for input data preliminary processing, networks training and words recognition are realized. The recognition accuracy for different number of convolution layers is estimated. Its number is determined and the structure of neural network is proposed. The comparison of recognition accuracy when the input data for the network is spectrogram or first two formants is carried out. The recognition algorithm is tested by male and female voices with different duration of pronunciation.


2020 ◽  
Author(s):  
Torsten Pook ◽  
Jan Freudenthal ◽  
Arthur Korte ◽  
Henner Simianer

ABSTRACTThe prediction of breeding values and phenotypes is of central importance for both livestock and crop breeding. With increasing computational power and more and more data to potentially utilize, Machine Learning and especially Deep Learning have risen in popularity over the last few years. In this study, we are proposing the use of local convolutional neural networks for genomic prediction, as a region specific filter corresponds much better with our prior genetic knowledge of traits than traditional convolutional neural networks. Model performances are evaluated on a simulated maize data panel (n = 10,000) and real Arabidopsis data (n = 2,039) for a variety of traits with the local convolutional neural network outperforming both multi layer perceptrons and convolutional neural networks for basically all considered traits. Linear models like the genomic best linear unbiased prediction that are often used for genomic prediction are outperformed by up to 24%. Highest gains in predictive ability was obtained in cases of medium trait complexity with high heritability and large training populations. However, for small dataset with 100 or 250 individuals for the training of the models, the local convolutional neural network is performing slightly worse than the linear models. Nonetheless, this is still 15% better than a traditional convolutional neural network, indicating a better performance and robustness of our proposed model architecture for small training populations. In addition to the baseline model, various other architectures with different windows size and stride in the local convolutional layer, as well as different number of nodes in subsequent fully connected layers are compared against each other. Finally, the usefulness of Deep Learning and in particular local convolutional neural networks in practice is critically discussed, in regard to multi dimensional inputs and outputs, computing times and other potential hazards.


Sign in / Sign up

Export Citation Format

Share Document