scholarly journals Deep Learning for Human Activity Recognition using on-Node Sensors

Due to advancement in technology, availability of resources and by increased utilization of on node sensors enormous amount of data is obtained. There is a necessity of analyzing and classifying this physiological information by efficient and effective approaches such as deep learning and artificial intelligence. Human Activity Recognition (HAR) is assuming a dominant role in sports, security, anti-crime, healthcare and also in environmental applications like wildlife observation etc. Most techniques work well for processing offline instead of real- time processing. There are few approaches which provide maximum accuracy for real time processing of large-scale data, one of the compromising approaches is deep learning. Limitation of resources is one of the causes to restrict the usage of deep learning for low power devices which can be worn on our body. Deep learning implementations are known to produce precise results for different computing systems.We suggest a deep learning approach in this paper which integrates features and data learned from inertial sensors with complementary knowledge obtained from a collection of shallow features which generates the possibility of performing real time activity classification accurately. Eliminating the obstructions caused by using deep learning methods for real-time analysis is the aim of this integrated design. Before passing the data into the deep learning framework, we perform spectral analysis to optimize the planned methodology for on-node computation. The accuracy obtained by combined approach is tested by utilizing datasets obtained from laboratory and real world controlled and uncontrolled environment. Our outcomes demonstrate the legitimacy of the methodology on various human action datasets, beating different techniques, including the two strategies utilized inside our consolidated pipeline. We additionally exhibit that our integrated design's classification times are reliable with on node real-time analysis criteria on smart phones and wearable technology.

2019 ◽  
Vol 25 (2) ◽  
pp. 743-755 ◽  
Author(s):  
Shaohua Wan ◽  
Lianyong Qi ◽  
Xiaolong Xu ◽  
Chao Tong ◽  
Zonghua Gu

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3726 ◽  
Author(s):  
Bandar Almaslukh ◽  
Abdel Artoli ◽  
Jalal Al-Muhtadi

Recently, modern smartphones equipped with a variety of embedded-sensors, such as accelerometers and gyroscopes, have been used as an alternative platform for human activity recognition (HAR), since they are cost-effective, unobtrusive and they facilitate real-time applications. However, the majority of the related works have proposed a position-dependent HAR, i.e., the target subject has to fix the smartphone in a pre-defined position. Few studies have tackled the problem of position-independent HAR. They have tackled the problem either using handcrafted features that are less influenced by the position of the smartphone or by building a position-aware HAR. The performance of these studies still needs more improvement to produce a reliable smartphone-based HAR. Thus, in this paper, we propose a deep convolution neural network model that provides a robust position-independent HAR system. We build and evaluate the performance of the proposed model using the RealWorld HAR public dataset. We find that our deep learning proposed model increases the overall performance compared to the state-of-the-art traditional machine learning method from 84% to 88% for position-independent HAR. In addition, the position detection performance of our model improves superiorly from 89% to 98%. Finally, the recognition time of the proposed model is evaluated in order to validate the applicability of the model for real-time applications.


Sign in / Sign up

Export Citation Format

Share Document