scholarly journals Analysis of Option Trading Strategies Based on the Relation of Implied and Realized S&P500 Volatilities

2021 ◽  
Vol 10 (1) ◽  
pp. 166-203
Author(s):  
Alexander Brunhuemer ◽  
Gerhard Larcher ◽  
Lukas Larcher

In this paper, we examine the performance of certain short option trading strategies on the S&P500 with backtesting based on historical option price data. Some of these strategies show significant outperformance in relation to the S&P500 index. We seek to explain this outperformance by modeling the negative correlation between the S&P500 and its implied volatility (given by the VIX) and through Monte Carlo simulation. We also provide free testing software and give an introduction to its use for readers interested in running further backtests on their own.

2009 ◽  
Vol 17 (3) ◽  
pp. 23-65
Author(s):  
Byungwook Choi

The purpose of this paper is to examine the argument that the put options traded in the exchanges are too high, compared to the asset prices based on the classical CAPM model, and thus the short position of the put option would make a significant profit from trading. In order to explore the earlier report, this paper, using the KOSPI 200 index options market price, estimates the historical rate of return on several option trading strategies such as naked option, protective put, covered call, straddle, and strangle. Secondly this paper compares the historical rates of return on the option trading strategies and Sharpe ratios with those generated by Monte-Carlo simulation and examines whether the historical option returns are inconsistent with Black-Scholes model, Jump-diffusion model, Stochastic Volatility model, or Stochastic Volatility with Jump model. Thirdly, this paper computes the optimal asset allocation ratio among the risk-free asset, risky assets, and option trading strategies in the viewpoint of rational investors who maximize the CRRA utility function. The results show that the historical returns on short position of ATM and OTM puts are too high to explain based on the classical CAPM, and the optimal allocation ratios among put, risky asset, and the risk-free asset are different from those derived using Monte-Carlo simulation.


2021 ◽  
Vol 14 (2) ◽  
pp. 183-193
Author(s):  
Abdul Hoyyi ◽  
Abdurakhman Abdurakhman ◽  
Dedi Rosadi

The Option is widely applied in the financial sector.  The Black-Scholes-Merton model is often used in calculating option prices on a stock price movement. The model uses geometric Brownian motion which assumes that the data is normally distributed. However, in reality, stock price movements can cause sharp spikes in data, resulting in nonnormal data distribution. So we need a stock price model that is not normally distributed. One of the fastest growing stock price models today is the  process exponential model. The  process has the ability to model data that has excess kurtosis and a longer tail (heavy tail) compared to the normal distribution. One of the members of the  process is the Variance Gamma (VG) process. The VG process has three parameters which each of them, to control volatility, kurtosis and skewness. In this research, the secondary data samples of options and stocks of two companies were used, namely zoom video communications, Inc. (ZM) and Nokia Corporation (NOK).  The price of call options is determined by using closed form equations and Monte Carlo simulation. The Simulation was carried out for various  values until convergent result was obtained.


2018 ◽  
Vol 7 (3) ◽  
pp. 239
Author(s):  
MAKBUL MUFLIHUNALLAH ◽  
KOMANG DHARMAWAN ◽  
NI MADE ASIH

Investing among investors is an exciting activity to gain profit in the financial world. The development of investment in the financial world affects the number of alternative investment instruments that can be offered to investors in the capital market. The management of instruments in finance depends on the accuracy of forecasting of variables for example volatility. Volatility is a statistic of the degree of price variation in one period to the next which is expressed by ?. Volatility values can be estimated using Implied Volatility. Implied Volatility is the volatility used in determining the price of European options obtained by equalizing the price of the theoretical options, the price obtained from the Black-Scholes model, with the option price in the market. In this research will discuss how to estimate Implied Volatility value using the option obtained from simulation with Monte Carlo.


2021 ◽  
Vol 3 (1) ◽  
pp. 80-92
Author(s):  
Chalimatusadiah Chalimatusadiah ◽  
Donny Citra Lesmana ◽  
Retno Budiarti

ABSTRAKHal yang utama dalam perdagangan opsi adalah penentuan harga jual opsi yang optimal. Namun pada kenyataan sebenarnya fluktuasi harga aset yang terjadi di pasar menandakan bahwa volatilitas dari harga aset tidaklah konstan, hal ini menyebabkan investor mengalami kesulitan dalam menentukan harga opsi yang optimal. Artikel ini membahas tentang penentuan harga opsi tipe Eropa yang optimal dengan volatilitas stokastik menggunakan metode Monte Carlo dan pengaruh harga saham awal, harga strike, dan waktu jatuh tempo terhadap harga opsi Eropa. Adapun model volatilitas stokastik yang digunakan dalam penelitian ini adalah model Heston, yang mengasumsikan bahwa proses harga saham (St) mengikuti distribusi log-normal, dan proses volatilitas saham (Vt) mengikuti Proses Cox-Ingersoll-Ross. Hal pertama yang dilakukan dalam penelitian ini adalah mengestimasi parameter model Heston untuk mendapatkan harga saham dengan menggunakan metode ordinary least square dan metode numerik Euler-Maruyama. Langkah kedua adalah melakukan estimasi harga saham untuk mendapatkan harga opsi tipe Eropa menggunakan metode Monte Carlo. Hasil dari penelitian ini menunjukkan bahwa penggunaan metode Monte Carlo dalam penentuan harga opsi tipe Eropa dengan volatilitas stokastik model Heston menghasilkan solusi yang cukup baik karena memiliki nilai error yang kecil dan akan konvergen ke solusi eksaknya dengan semakin banyak simulasi. Selain itu, simulasi Monte Carlo memberikan kesimpulan bahwa parameter harga strike, harga saham awal dan waktu jatuh tempo memiliki pengaruh terhadap harga opsi yang konsisten dengan teori harga opsi. ABSTRACTWhat is important in options trading is determining the optimal selling price. However, in real market conditions, fluctuations in asset prices that occur in the market indicate that the volatility of asset prices is not constant, this causes investors to experience difficulty in determining the optimal option price. This article discusses the optimal determination of the European type option price with stochastic volatility using the Monte Carlo method and the effect of the initial stock price, strike price, and expiration date on European option prices. The stochastic volatility model used in this study is the Heston model, which assumes that the stock price process (S) follows the normal log distribution, and the stock volatility process (V) follows the Ingersoll-Ross Cox Process. The first thing to do in this study is to estimate the parameters of the Heston model to get stock prices using the ordinary least square method and the Euler-Maruyama numerical method. The second step is to estimate the share price to get the European type option price using a Monte Carlo Simulation. This study indicates that using the Monte Carlo method in determining the price of European type options with the Heston model of stochastic volatility produces a fairly good solution because it has a small error value and will converge to the exact solution with more simulations. Also, the Monte Carlo simulation concludes that the parameters of the strike price, initial stock price, and maturity date influence the option price, which is consistent with the option price theory.


2021 ◽  
Vol 14 (6) ◽  
pp. 254
Author(s):  
Ryno du Plooy ◽  
Pierre J. Venter

In this paper, the pricing performances of two learning networks, namely an artificial neural network and a bootstrap aggregating ensemble network, were compared when pricing the Johannesburg Stock Exchange (JSE) Top 40 European call options in a modern option pricing framework using a constructed implied volatility surface. In addition to this, the numerical accuracy of the better performing network was compared to a Monte Carlo simulation in a separate numerical experiment. It was found that the bootstrap aggregating ensemble network outperformed the artificial neural network and produced price estimates within the error bounds of a Monte Carlo simulation when pricing derivatives in a multi-curve framework setting.


Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Sign in / Sign up

Export Citation Format

Share Document