scholarly journals Evolutionary Algorithm for the Electric Vehicle Routing Problem with Battery Degradation and Capacitated Charging Stations

2020 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Juan Pablo Futalef ◽  
Diego Muñoz-Carpintero ◽  
Heraldo Rozas ◽  
Marcos Orchard

As CO2 emission regulations increase, fleet owners increasingly consider the adoption of Electric Vehicle (EV) fleets in their business. The conventional Vehicle Routing Problem (VRP) aims to find a set of routes to reduce operational costs. However, route planning of EVs poses different challenges than that of Internal Combustion Engine Vehicles (ICEV). The Electric Vehicle Routing Problem (E-VRP) must take into consideration EV limitations such as short driving range, high charging time, poor charging infrastructure, and battery degradation. In this work, the E-VRP is formulated as a Prognostic Decision-Making problem. It considers customer time windows, partial midtour recharging operations, non-linear charging functions, and limited Charge Station (CS) capacities. Besides, battery State of Health (SOH) policies are included in the E-VRP to prevent early degradation of EV batteries. An optimization problem is formulated with the above considerations, when each EV has a set of costumers assigned, which is solved by a Genetic Algorithm (GA) approach. This GA has been suitably designed to decide the order of customers to visit, when and how much to recharge, and when to begin the operation. A simulation study is conducted to test GA performance with fleets and networks of different sizes. Results show that E-VRP effectively enables operation of the fleet, satisfying all operational constraints.

2021 ◽  
pp. 1-20
Author(s):  
Jiawen Deng ◽  
Junqing Li ◽  
Chengyou Li ◽  
Yuyan Han ◽  
Qingsong Liu ◽  
...  

This paper investigates the electric vehicle routing problem with time windows and nonlinear charging constraints (EVRPTW-NL), which is more practical due to battery degradation. A hybrid algorithm combining an improved differential evolution and several heuristic (IDE) is proposed to solve this problem, where the weighted sum of the total trip time and customer satisfaction value is minimized. In the proposed algorithm, a special encoding method is presented that considers charging stations features. Then, a battery charging adjustment (BCA) strategy is integrated to decrease the charging time. Furthermore, a novel negative repair strategy is embedded to make the solution feasible. Finally, several instances are generated to examine the effectiveness of the IDE algorithm. The high performance of the IDE algorithm is shown in comparison with two efficient algorithms.


2021 ◽  
Vol 15 (4/5) ◽  
pp. 444
Author(s):  
Zhenping Li ◽  
Guohua Wu ◽  
Ke Zhang ◽  
Shuxuan Li ◽  
Chenglin Xiao ◽  
...  

2014 ◽  
Vol 48 (4) ◽  
pp. 500-520 ◽  
Author(s):  
Michael Schneider ◽  
Andreas Stenger ◽  
Dominik Goeke

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 114864-114875 ◽  
Author(s):  
Huiting Mao ◽  
Jianmai Shi ◽  
Yuzhen Zhou ◽  
Guoqing Zhang

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Li Wang ◽  
Shuai Gao ◽  
Kai Wang ◽  
Tong Li ◽  
Lin Li ◽  
...  

With energy and environmental issues becoming increasingly prominent, electric vehicles (EVs) have become the important transportation means in the logistics distribution. In the real-world urban road network, there often exist multiple paths between any two locations (depot, customer, and charging station) since the time-dependent travel times. That is, the travel speed of an EV on each path may be different during different time periods, and thus, this paper explicitly considers path selection between two locations in the time-dependent electric vehicle routing problem with time windows, denoted as path flexibility. Therefore, the integrated decision-making should include not only the routing plan but also the path selection, and the interested problem of this paper is a time-dependent electric vehicle routing problem with time windows and path flexibility (TDEVRP-PF). In order to determine the optimal path between any two locations, an optimization model is established with the goal of minimizing the distance and the battery energy consumption associated with travel speed and cargo load. On the basis of the optimal path model, a 0-1 mixed-integer programming model is then formulated to minimize the total travel distance. Hereinafter, an improved version of the variable neighborhood search (VNS) algorithm is utilized to solve the proposed models, in which multithreading technique is adopted to improve the solution efficiency significantly. Ultimately, several numerical experiments are carried out to test the performance of VNS with a view to the conclusion that the improved VNS is effective in finding high-quality distribution schemes consisted of the distribution routes, traveling paths, and charging plans, which are of practical significance to select and arrange EVs for logistics enterprises.


Sign in / Sign up

Export Citation Format

Share Document