scholarly journals A Three-Phase Weather-Dependent Power Flow Approach for 4-Wire Multi-Grounded Unbalanced Microgrids with Bare Overhead Conductors

Author(s):  
Evangelos Pompodakis

<p><b>Conventional power flow (CPF) algorithms assume that the network resistances and reactances remain constant regardless of the weather and loading conditions. Although the impact of the weather in power flow analysis has been recently investigated via the weather-dependent power flow (WDPF) approaches, the magnetic effects in the core of ACSR conductors have not been explicitly considered. ACSR conductors are widely used in distribution networks. Therefore, this manuscript proposes a three-phase weather-dependent power flow algorithm for 4-wire multi-grounded unbalanced microgrids (MGs), which takes into consideration the impact of weather as well as the magnetic effects in the core of ACSR conductors. It is shown that the magnetic effects in the core can significantly influence the power flow results, especially for networks composed of single-layer ACSR conductors. Furthermore, the proposed algorithm explicitly considers the multi-grounded neutral conductor, thus it can precisely simulate unbalanced low voltage (LV) and medium voltage (MV) networks. In addition, the proposed approach is generic and can be applied in both grid-connected and islanded networks. Simulations conducted in a 25-Bus unbalanced LV microgrid highlight the accuracy and benefit of the proposed approach. </b></p>

2020 ◽  
Author(s):  
Evangelos Pompodakis

<p><b>Conventional power flow (CPF) algorithms assume that the network resistances and reactances remain constant regardless of the weather and loading conditions. Although the impact of the weather in power flow analysis has been recently investigated via the weather-dependent power flow (WDPF) approaches, the magnetic effects in the core of ACSR conductors have not been explicitly considered. ACSR conductors are widely used in distribution networks. Therefore, this manuscript proposes a three-phase weather-dependent power flow algorithm for 4-wire multi-grounded unbalanced microgrids (MGs), which takes into consideration the impact of weather as well as the magnetic effects in the core of ACSR conductors. It is shown that the magnetic effects in the core can significantly influence the power flow results, especially for networks composed of single-layer ACSR conductors. Furthermore, the proposed algorithm explicitly considers the multi-grounded neutral conductor, thus it can precisely simulate unbalanced low voltage (LV) and medium voltage (MV) networks. In addition, the proposed approach is generic and can be applied in both grid-connected and islanded networks. Simulations conducted in a 25-Bus unbalanced LV microgrid highlight the accuracy and benefit of the proposed approach. </b></p>


2020 ◽  
Author(s):  
Evangelos Pompodakis

<p><b>Conventional power flow (CPF) algorithms assume that the network resistances and reactances remain constant regardless of the weather and loading conditions. Although the impact of the weather in power flow analysis has been recently investigated via the weather-dependent power flow (WDPF) approaches, the magnetic effects in the core of ACSR conductors have not been explicitly considered. ACSR conductors are widely used in distribution networks. Therefore, this manuscript proposes a three-phase weather-dependent power flow algorithm for 4-wire multi-grounded unbalanced microgrids (MGs), which takes into consideration the impact of weather as well as the magnetic effects in the core of ACSR conductors. It is shown that the magnetic effects in the core can significantly influence the power flow results, especially for networks composed of single-layer ACSR conductors. Furthermore, the proposed algorithm explicitly considers the multi-grounded neutral conductor, thus it can precisely simulate unbalanced low voltage (LV) and medium voltage (MV) networks. In addition, the proposed approach is generic and can be applied in both grid-connected and islanded networks. Simulations conducted in a 25-Bus unbalanced LV microgrid highlight the accuracy and benefit of the proposed approach. </b></p>


2020 ◽  
Author(s):  
Celso Rocha ◽  
Paulo Radatz ◽  
Carlos Almeida ◽  
Nelson Kagan

This paper presents a near real-time strategy for Active Network Management (ANM) considering distribution networks with high penetration of Distributed Generation (DG). It is built upon a centralized framework and availability of a broad communication infrastructure. Generation curtailment level of Medium Voltage (MV), residential and commercial-scale Photovoltaic (PV) systems are considered as control variables to manage voltage and asset loading levels in MV and Low-Voltage (LV) distribution networks through a three-phase unbalanced Non-Linear (NL) Optimum Power Flow (OPF) algorithm. The effectiveness of the strategy in maintaining the regulatory operational levels, its robustness and the effect of the processing and communication delays are assessed by simulating a real Brazilian network with 788 control elements.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 897
Author(s):  
Stefanos Petridis ◽  
Orestis Blanas ◽  
Dimitrios Rakopoulos ◽  
Fotis Stergiopoulos ◽  
Nikos Nikolopoulos ◽  
...  

The increase of distributed energy resources (DERs) in low voltage (LV) distribution networks requires the ability to perform an accurate power flow analysis (PFA) in unbalanced systems. The characteristics of a well performing power flow algorithm are the production of accurate results, robustness and quick convergence. The current study proposes an improvement to an already used backward-forward sweep (BFS) power flow algorithm for unbalanced three-phase distribution networks. The proposed power flow algorithm can be implemented in large systems producing accurate results in a small amount of time using as little computational resources as possible. In this version of the algorithm, the network is represented in a tree-like structure, instead of an incidence matrix, avoiding the use of redundant computations and the storing of unnecessary data. An implementation of the method was developed in Python programming language and tested for 3 IEEE feeder test cases (the 4 bus feeder, the 13 bus feeder and the European Low Voltage test feeder), ranging from a low (4) to a very high (907) buses number, while including a wide variety of components witnessed in LV distribution networks.


Author(s):  
M Thomson ◽  
D Infield

This paper investigates potential technical effects that a high take up of domestic micro-CHP could have on an electricity distribution system. This study is based on a combination of house-by-house energy use modelling and network power-flow analysis. A variety of micro-CHP technologies are represented, including Stirling engines, internal combustion engines, and fuel cells. These have different heat-to-power ratios and thus different impacts on the electricity system. The results and discussion focus on voltage rise, which is considered to be the primary constraint on allowable penetration.


2021 ◽  
Author(s):  
Evangelos Pompodakis ◽  
Andreas I. Chrysochos ◽  
Arif Ahmed ◽  
Minas C. Alexiadis

<p>This manuscript proposes a time-series temperature-dependent power flow method for unbalanced distribution networks consisting of underground cables. A thermal circuit model for unbalanced three-phase multi-core cables is developed to estimate the conductor temperature and resistance of Medium and Low Voltage distribution networks. More specifically, a novel approach is proposed to model and estimate the parameters of the three-phase thermal circuit of 3/4-core cables, using the results of Finite Element Method and Particle Swarm Optimization. The proposed approach is generic and can be accurately applied to any kind of 3- or 4-core cables buried in homogeneous or non-homogeneous soil. Furthermore, it is applicable in cases where one or more adjacent cables exist. Using the proposed approach, the conductor temperature of each phase can be individually and precisely calculated even in networks with highly unbalanced loads. The proposed approach is expected to be an important tool for simulating the steady state of unbalanced distribution networks and estimating the conductor temperatures. The proposed thermal circuit is validated using two 4-core LV and one 3-core MV cables buried in different depths in homogeneous or non-homogeneous soil. Time-series power flow for a whole year is performed in a 25-bus unbalanced LV network consisting of multicore underground cables.</p>


2020 ◽  
Author(s):  
Evangelos Pompodakis ◽  
Arif Ahmed ◽  
Minas Alexiadis

<p><b>Power flow is an integral part of distribution system planning, monitoring, operation, and analysis. This two-part paper proposes a sensitivity-based three-phase weather-dependent power flow approach for accurately simulating distribution networks with local voltage controllers (LVC). This part II, firstly, presents simulation results of the proposed approach in an 8-Bus and 7-Bus network, which are validated using dynamic simulation. Secondly, simulation results for the IEEE 8500-node network are also presented. An extensive comparison is conducted between the proposed sensitivity-based approach and the other existing power flow approaches with respect to result accuracy and convergence speed. Moreover, the influence of weather and magnetic effects on the power flow results and the LVC states is also investigated. Simulation results confirm that the proposed sensitivity-based approach produces more accurate results than the existing approaches since it considers the actual switching sequence of LVCs as well as the weather and magnetic effects on the network. Moreover, the proposed algorithm exhibits accelerated convergence due to the usage of the sensitivity parameters, which makes it an important tool for distribution system analysis. </b></p>


2021 ◽  
Author(s):  
Evangelos Pompodakis ◽  
Arif Ahmed ◽  
Minas Alexiadis

<p><b>Power flow is an integral part of distribution system planning, monitoring, operation, and analysis. This two-part paper proposes a sensitivity-based three-phase weather-dependent power flow approach for accurately simulating distribution networks with local voltage controllers (LVC). This part II, firstly, presents simulation results of the proposed approach in an 8-Bus and 7-Bus network, which are validated using dynamic simulation. Secondly, simulation results for the IEEE 8500-node network are also presented. An extensive comparison is conducted between the proposed sensitivity-based approach and the other existing power flow approaches with respect to result accuracy and convergence speed. Moreover, the influence of weather and magnetic effects on the power flow results and the LVC states is also investigated. Simulation results confirm that the proposed sensitivity-based approach produces more accurate results than the existing approaches since it considers the actual switching sequence of LVCs as well as the weather and magnetic effects on the network. Moreover, the proposed algorithm exhibits accelerated convergence due to the usage of the sensitivity parameters, which makes it an important tool for distribution system analysis. </b></p>


Sign in / Sign up

Export Citation Format

Share Document