scholarly journals Parametric Convolutional Neural Network for Radar-based Human Activity Classification Using Raw ADC Data

Author(s):  
Thomas Stadelmayer ◽  
Avik Santra

Radar sensors offer a promising and effective sensing modality for<br>human activity classification. Human activity classification enables several smart<br>homes applications for energy saving, human-machine interface for gesture<br>controlled appliances and elderly fall-motion recognition. Present radar-based<br>activity recognition system exploit micro-Doppler signature by generating Doppler<br>spectrograms or video of range-Doppler images (RDIs), followed by deep neural<br>network or machine learning for classification. Although, deep convolutional neural<br>networks (DCNN) have been shown to implicitly learn features from raw sensor<br>data in other fields, such as camera and speech, yet for the case of radar DCNN<br>preprocessing followed by feature image generation, such as video of RDI or<br>Doppler spectrogram, is required to develop a scalable and robust classification<br>or regression application. In this paper, we propose a parametric convolutional<br>neural network that mimics the radar preprocessing across fast-time and slow-time<br>radar data through 2D sinc filter or 2D wavelet filter kernels to extract features for<br>classification of various human activities. It is demonstrated that our proposed<br>solution shows improved results compared to equivalent state-of-art DCNN solutions<br>that rely on Doppler spectrogram or video of RDIs as feature images.

2020 ◽  
Author(s):  
Thomas Stadelmayer ◽  
Avik Santra

Radar sensors offer a promising and effective sensing modality for<br>human activity classification. Human activity classification enables several smart<br>homes applications for energy saving, human-machine interface for gesture<br>controlled appliances and elderly fall-motion recognition. Present radar-based<br>activity recognition system exploit micro-Doppler signature by generating Doppler<br>spectrograms or video of range-Doppler images (RDIs), followed by deep neural<br>network or machine learning for classification. Although, deep convolutional neural<br>networks (DCNN) have been shown to implicitly learn features from raw sensor<br>data in other fields, such as camera and speech, yet for the case of radar DCNN<br>preprocessing followed by feature image generation, such as video of RDI or<br>Doppler spectrogram, is required to develop a scalable and robust classification<br>or regression application. In this paper, we propose a parametric convolutional<br>neural network that mimics the radar preprocessing across fast-time and slow-time<br>radar data through 2D sinc filter or 2D wavelet filter kernels to extract features for<br>classification of various human activities. It is demonstrated that our proposed<br>solution shows improved results compared to equivalent state-of-art DCNN solutions<br>that rely on Doppler spectrogram or video of RDIs as feature images.


2021 ◽  
Author(s):  
Thomas Stadelmayer ◽  
Avik Santra

Radar sensors offer a promising and effective sensing modality for human activity classification. Human activity classification enables several smart homes applications for energy saving, human-machine interface for gesture controlled appliances and elderly fall-motion recognition. Present radar-based activity recognition system exploit micro-Doppler signature by generating Doppler spectrograms or video of range-Doppler images (RDIs), followed by deep neural network or machine learning for classification. Although, deep convolutional neural networks (DCNN) have been shown to implicitly learn features from raw sensor data in other fields, such as camera and speech, yet for the case of radar DCNN preprocessing followed by feature image generation, such as video of RDI or Doppler spectrogram, is required to develop a scalable and robust classification or regression application. In this paper, we propose a parametric convolutional neural network that mimics the radar preprocessing across fast-time and slow-time radar data through 2D sinc filter or 2D wavelet filter kernels to extract features for classification of various human activities. It is demonstrated that our proposed solution shows improved results compared to equivalent state-of-art DCNN solutions that rely on Doppler spectrogram or video of RDIs as feature images.


Author(s):  
Muhammad Muaaz ◽  
Ali Chelli ◽  
Martin Wulf Gerdes ◽  
Matthias Pätzold

AbstractA human activity recognition (HAR) system acts as the backbone of many human-centric applications, such as active assisted living and in-home monitoring for elderly and physically impaired people. Although existing Wi-Fi-based human activity recognition methods report good results, their performance is affected by the changes in the ambient environment. In this work, we present Wi-Sense—a human activity recognition system that uses a convolutional neural network (CNN) to recognize human activities based on the environment-independent fingerprints extracted from the Wi-Fi channel state information (CSI). First, Wi-Sense captures the CSI by using a standard Wi-Fi network interface card. Wi-Sense applies the CSI ratio method to reduce the noise and the impact of the phase offset. In addition, it applies the principal component analysis to remove redundant information. This step not only reduces the data dimension but also removes the environmental impact. Thereafter, we compute the processed data spectrogram which reveals environment-independent time-variant micro-Doppler fingerprints of the performed activity. We use these spectrogram images to train a CNN. We evaluate our approach by using a human activity data set collected from nine volunteers in an indoor environment. Our results show that Wi-Sense can recognize these activities with an overall accuracy of 97.78%. To stress on the applicability of the proposed Wi-Sense system, we provide an overview of the standards involved in the health information systems and systematically describe how Wi-Sense HAR system can be integrated into the eHealth infrastructure.


Author(s):  
D. Lebedev ◽  
A. Abzhalilova

Currently, biometric methods of personality are becoming more and more relevant recognition technology. The advantage of biometric identification systems, in comparison with traditional approaches, lies in the fact that not an external object belonging to a person is identified, but the person himself. The most widespread technology of personal identification by fingerprints, which is based on the uniqueness for each person of the pattern of papillary patterns. In recent years, many algorithms and models have appeared to improve the accuracy of the recognition system. The modern algorithms (methods) for the classification of fingerprints are analyzed. Algorithms for the classification of fingerprint images by the types of fingerprints based on the Gabor filter, wavelet - Haar, Daubechies transforms and multilayer neural network are proposed. Numerical and results of the proposed experiments of algorithms are carried out. It is shown that the use of an algorithm based on the combined application of the Gabor filter, a five-level wavelet-Daubechies transform and a multilayer neural network makes it possible to effectively classify fingerprints.


2021 ◽  
pp. 41-50
Author(s):  
Aniket Verma ◽  
Amit Suman ◽  
Vidyadevi G. Biradar ◽  
S. Brunda

2018 ◽  
Vol 232 ◽  
pp. 04024
Author(s):  
Yuchen Wang ◽  
Mantao Wang ◽  
Zhouyu Tan ◽  
Jie Zhang ◽  
Zhiyong Li ◽  
...  

With the growth of building monitoring network, increasing human resource and funds have been invested into building monitoring system. Computer vision technology has been widely used in image recognition recently, and this technology has also been gradually applied to action recognition. There are still many disadvantages of traditional monitoring system. In this paper, a human activity recognition system which based on the convolution neural network is proposed. Using the 3D convolution neural network and the transfer learning technology, the human activity recognition engine is constructed. The Spring MVC framework is used to build the server end, and the system page is designed in HBuilder. The system not only enhances efficiency and functionality of building monitoring system, but also improves the level of building safety.


Sign in / Sign up

Export Citation Format

Share Document