scholarly journals Evaluation of Nonlinear Interference Effects in a Dispersion Managed (DM) Optical Fiber: Performance and Transmission Analysis of 16QAM Modulation using Split Step Fourier Method

Author(s):  
Reinhardt Rading

<div>This paper investigates the impact on the optical</div><div>signal-to-noise ratio (OSNR) of the residual per span (RDPS) in a N × 100km dispersion managed system with zero total accumulated dispersion from input to output using split step Fourier method (SSFM) -Monte Carlo simulation. </div><div><br></div><div>This paper shows that the nonlinear interference NLI does in-fact impact the performance yielding different best working power depending on the value of Nx100 km span and the type of dispersion managed link. The paper shows that dispersion uncompensated optical links are preferable to dispersion managed fibers in equalizing NLI effects in long haul optical links.</div>

2020 ◽  
Author(s):  
Reinhardt Rading

<div>This paper investigates the impact on the optical</div><div>signal-to-noise ratio (OSNR) of the residual per span (RDPS) in a N × 100km dispersion managed system with zero total accumulated dispersion from input to output using split step Fourier method (SSFM) -Monte Carlo simulation. </div><div><br></div><div>This paper shows that the nonlinear interference NLI does in-fact impact the performance yielding different best working power depending on the value of Nx100 km span and the type of dispersion managed link. The paper shows that dispersion uncompensated optical links are preferable to dispersion managed fibers in equalizing NLI effects in long haul optical links.</div>


2020 ◽  
Vol 238 ◽  
pp. 09001
Author(s):  
Paulo J. Pereira ◽  
João L. Rebola ◽  
Luís G. Cancela

A new procedure is proposed to optimize the intercarrier spacing and wavelength selective switch (WSS) bandwidth for superchannels, using a Monte Carlo simulation. We perform an exhaustive assessment of the optical signal-to-noise ratio (OSNR) penalties due to the optical filtering and intercarrier crosstalk, and concluded that the optimum intercarrier spacing is at most 1.1 GHz larger than the Nyquist bandwidth and the results show how the number of cascaded WSSs influences the intercarrier spacing.


2019 ◽  
Author(s):  
Brian Redman

This paper is a follow-up to a previous paper introducing the new bitstream Photon Counting Chirped Amplitude Modulation (AM) Lidar (PC-CAML) with a Digital Logic Local Oscillator (DLLO) concept. In that previous work, the DLLO was unipolar. In this paper, a new bipolar DLLO for the bitstream PC-CAML is introduced (patent pending). The bipolar DLLO retains the key advantages of the unipolar DLLO for the bitstream PC-CAML since it also replaces bulky, power-hungry, and expensive wideband RF analog electronics with digital components that can be implemented in inexpensive silicon complementary metal-oxide-semiconductor (CMOS) read-out integrated circuits (ROICs) to make the bitstream PC-CAML with a DLLO more suitable for compact lidar-on-a-chip systems and lidar array receivers than previous PC-CAML systems. In addition, the bipolar DLLO improves the electrical power signal-to-noise ratio (SNR) of the bitstream PC-CAML by about 2.5 dB compared to that of the unipolar DLLO as shown by the theoretical and Monte Carlo simulation results presented in this paper. Theoretically, there should be a 3 dB improvement for the bipolar DLLO from the elimination of the signal power loss to the DC component of the intermediate frequency (IF) spectrum that occurs with the unipolar DLLO. However, this improvement is partially offset by a higher quantization noise for the bipolar DLLO compared to that of the unipolar DLLO as explained in this paper.This paper introduces the bipolar DLLO for bitstream PC-CAML concept and presents the initial signal-to-noise ratio (SNR) theory with comparisons to Monte Carlo simulation results.


2009 ◽  
Vol 4 (07) ◽  
pp. P07007-P07007
Author(s):  
H Delis ◽  
V Vlachopoulou ◽  
G Spyrou ◽  
L Costaridou ◽  
G Tzanakos ◽  
...  

1987 ◽  
Vol 77 (3) ◽  
pp. 942-957
Author(s):  
C. A. Zelt ◽  
J. J. Drew ◽  
M. J. Yedlin ◽  
R. M. Ellis

Abstract In crustal refraction experiments, the crucial deeply refracted and head wave arrivals often have a low signal-to-noise ratio. A method to aid in the picking of noisy refraction data is presented which is applicable to any branch of a seismic section whose waveform is approximately invariant throughout the branch. The technique exploits the spatial correlation of arrivals and is based on the lateral coherency which results if the refracted arrivals are aligned by applying appropriate time shifts to each trace of the branch. The alignment of arrivals occurs iteratively and is accomplished through a cross-correlation of each trace with the stack of the section of the previous iteration. The iteration yielding the section with the highest degree of lateral coherency (semblance) is used to extract the travel-time pick of each trace. The pick, plus a possible d.c. component, is the negative of the time shift required to achieve arrival alignment. Two modifications can improve the performance of the picking routine. To prevent a cycle skipping problem, a Monte Carlo technique is implemented in which the cross-correlation function is transformed into a probability distribution so that the lag corresponding to the maximum cross-correlation is most probably selected. Second, to increase the coherency of the arrivals, a spectral balancing technique is applied in either the time or frequency domain. The picking routine is applied to both a synthetic and real data example, and the results suggest that the routine can be applied successfully to data with a signal-to-noise ratio as low as one. Also, the Monte Carlo procedure together with spectral balancing increases the final semblance over that obtained with the unmodified method.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4487
Author(s):  
Axel Clouet ◽  
Jérôme Vaillant ◽  
David Alleysson

Digital images are always affected by noise and the reduction of its impact is an active field of research. Noise due to random photon fall onto the sensor is unavoidable but could be amplified by the camera image processing such as in the color correction step. Color correction is expressed as the combination of a spectral estimation and a computation of color coordinates in a display color space. Then we use geometry to depict raw, spectral and color signals and noise. Geometry is calibrated on the physics of image acquisition and spectral characteristics of the sensor to study the impact of the sensor space metric on noise amplification. Since spectral channels are non-orthogonal, we introduce the contravariant signal to noise ratio for noise evaluation at spectral reconstruction level. Having definitions of signal to noise ratio for each steps of spectral or color reconstruction, we compare performances of different types of sensors (RGB, RGBW, RGBWir, CMY, RYB, RGBC).


2013 ◽  
Vol 479-480 ◽  
pp. 1027-1031
Author(s):  
Man Man Guo ◽  
Yun Xue Liu ◽  
Wen Qiang Fan

Spectrum sensing is a crucial issue in cognitive radio networks for primary user detection. Cooperative sensing based on energy detection in the cognitive radio network with multiple antennas base-station is considered in this letter. To improve the sensing performance, we investigate hybrid fusion of the observed energies from the base-station and decisions (1bit, hard information) from different cognitive radio (CR) users around the base-station. Further, we present an optimized scheme where the global detection probability can be maximized according to the Neyman-Pearson criterion. Finally the impact of the change of parameters (Signal to Noise Ratio and number of CR users) in the optimized scheme is analyzed. Numerical simulations and extensive analysis confirm that hybrid fusion base on the optimized scheme is a good choice, also, Signal to Noise Ratio (SNR) and number of CR users does not have influence on the optimized scheme


2020 ◽  
Author(s):  
Qahhar Muhammad Qadir

This letter studies the performance of a single gateway LoRa system in the presence of different interference considering the imperfect orthogonality effect. It utilizes concepts of stochastic geometry to present a low-complexity approximate closed-form model for computing the success and coverage probabilities under these challenging conditions. Monte Carlo simulation results have shown that LoRa is not as theoretically described as a technology that can cover few to ten kilometers. It was found that in the presence of the combination of signal-to-noise ratio (SNR) and imperfect orthogonality between spreading factors (SF), the performance degrades dramatically beyond a couple of kilometers. However, better performance is observed when perfect orthogonality is considered and SNR is not included. Furthermore, the performance is annulus dependent and slightly improves at the border of the deployment cell annuli. Finally, the coverage probability declines exponentially as the average number of end devices grows.


Sign in / Sign up

Export Citation Format

Share Document