Performance Analysis of Hybrid Fusion in Cognitive Radio Networks

2013 ◽  
Vol 479-480 ◽  
pp. 1027-1031
Author(s):  
Man Man Guo ◽  
Yun Xue Liu ◽  
Wen Qiang Fan

Spectrum sensing is a crucial issue in cognitive radio networks for primary user detection. Cooperative sensing based on energy detection in the cognitive radio network with multiple antennas base-station is considered in this letter. To improve the sensing performance, we investigate hybrid fusion of the observed energies from the base-station and decisions (1bit, hard information) from different cognitive radio (CR) users around the base-station. Further, we present an optimized scheme where the global detection probability can be maximized according to the Neyman-Pearson criterion. Finally the impact of the change of parameters (Signal to Noise Ratio and number of CR users) in the optimized scheme is analyzed. Numerical simulations and extensive analysis confirm that hybrid fusion base on the optimized scheme is a good choice, also, Signal to Noise Ratio (SNR) and number of CR users does not have influence on the optimized scheme

2018 ◽  
Vol 3 (2) ◽  
pp. 70-80
Author(s):  
Haroun Errachid Adardour ◽  
Samir Kameche

The signal strength sensing in the context of cognitive radio networks (CRNs), is very important to predict the primary signal of base station (PBS), particularly when the secondary user (SU) is in a congested environment, and also when is in motion towards the end of coverage of PBS. However, this article presents an analysis on the prediction of primary signal strength in CRNs using an Alpha-Beta Filter (ABF) and a Neyman-Pearson Detector (NPD). The challenge of this contribution is based on a realistic sensing of primary signal strength and to do that, we have assumed that the reporting channels between the SU and the PBS are composited with the shadowing and multipath fading (SMF), and the receiver noise has also added. In this regard, the obtained results were discussed through: the signal-to-noise ratio (SNR) uncertainty, the detection probability (PD) and the False Alarm Probability (PFA), where the average relative error of prediction for the PD will be equal to10-5.


2021 ◽  
Vol 11 (1) ◽  
pp. 1-6
Author(s):  
Abdelrahim Ahmed Mohammed Ate ◽  
Sohila Mohamed

This paper explains the Universal Software Radio Peripheral (USRP) Experiment results of Spectrum Sensing Algorithms based on the Energy Ration Algorithm for Cognitive Radio Networks which is latterly suggested in Spectrum observation for OFDM-Based Cognitive Radio Networks by using Energy Ratio Algorithm. This is completed through detecting the variance in the strength of the signal during a variety of confined OFDM subcarriers are used to ensure that the availability of the essential user is facilely discovered. Extensive experiments are performed, in particular, the effects of Signal to Noise Ratio (SNR). This paper observed that the experimental results gave lower detection performance compared to the simulation results. That’s due to existence of other systems which operate on same frequency band of 2.4GHz.


Author(s):  
Dileep Reddy Bolla ◽  
Jijesh J J ◽  
Mahaveer Penna ◽  
Shiva Shankar

Back Ground/ Aims:: Now-a-days in the Wireless Communications some of the spectrum bands are underutilized or unutilized; the spectrum can be utilized properly by using the Cognitive Radio Techniques using the Spectrum Sensing mechanisms. Objectives:: The prime objective of the research work carried out is to achieve the energy efficiency and to use the spectrum effectively by using the spectrum management concept and achieve better throughput, end to end delay etc., Methods:: The detection of the spectrum hole plays a vital role in the routing of Cognitive Radio Networks (CRNs). While detecting the spectrum holes and the routing, sensing is impacted by the hidden node issues and exposed node issues. The impact of sensing is improved by incorporating the Cooperative Spectrum Sensing (CSS) techniques. Along with these issues the spectrum resources changes time to time in the routing. Results:: All the issues are addressed with An Energy Efficient Spectrum aware Routing (EESR) protocol which improves the timeslot and the routing schemes. The overall network life time is improved with the aid of residual energy concepts and the overall network performance is improved. Conclusion:: The proposed protocol (EESR) is an integrated system with spectrum management and the routing is successfully established to communication in the network and further traffic load is observed to be balanced in the protocol based on the residual energy in a node and further it improves the Network Lifetime of the Overall Network and the Individual CR user, along with this the performance of the proposed protocol outperforms the conventional state of art routing protocols.


Information ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 500
Author(s):  
Kun Tang ◽  
Shaowei Liao

In this paper, we investigate a relay-assisted cooperative spectrum sharing for the considered non-orthogonal multiple access (NOMA) scheme in cognitive radio networks, where the relay node assists the base station (BS) to transmit the superimposed composite signal to two receivers by utilizing an amplified-and-forward (AF) technique with simultaneous wireless information and power transfer (SWIPT). The exact expressions for outage probabilities of two receivers are derived in closed forms. Moreover, a joint optimization of power allocation and the proportion of information splitting for energy harvesting is proposed in terms of energy efficiency (EE) maximization under required data reliability. Simulation results validate the analytical results since the analytical results match well with simulation results and demonstrate the performance advantages of the proposed scheme over other schemes and direct transmission.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4487
Author(s):  
Axel Clouet ◽  
Jérôme Vaillant ◽  
David Alleysson

Digital images are always affected by noise and the reduction of its impact is an active field of research. Noise due to random photon fall onto the sensor is unavoidable but could be amplified by the camera image processing such as in the color correction step. Color correction is expressed as the combination of a spectral estimation and a computation of color coordinates in a display color space. Then we use geometry to depict raw, spectral and color signals and noise. Geometry is calibrated on the physics of image acquisition and spectral characteristics of the sensor to study the impact of the sensor space metric on noise amplification. Since spectral channels are non-orthogonal, we introduce the contravariant signal to noise ratio for noise evaluation at spectral reconstruction level. Having definitions of signal to noise ratio for each steps of spectral or color reconstruction, we compare performances of different types of sensors (RGB, RGBW, RGBWir, CMY, RYB, RGBC).


Sign in / Sign up

Export Citation Format

Share Document