scholarly journals Volumetric Fetal Flow Imaging with Magnetic Resonance Imaging

Author(s):  
Datta Singh Goolaub ◽  
Jiawei Xu ◽  
Eric Schrauben ◽  
Davide Marini ◽  
John Kingdom ◽  
...  

Fetal development relies on a complex circulatory network and accurately assessing the flow distribution is important for understanding pathologies and potential therapies. In this paper, we demonstrate a method for volumetric multidimensional imaging of fetal flow with magnetic resonance imaging (MRI). Fetal application of MRI faces several challenges such as small vascular structures, unpredictable motion, and lack of traditional cardiac gating methods. Here, orthogonal multislice stacks are acquired with accelerated multidimensional radial phase contrast (PC) MRI. Each slice is reconstructed into flow sensitive time-series images (CINEs) with retrospective intraslice motion correction and image-based fetal cardiac gating. CINEs are then combined into a dynamic 3D volume using slice-to-volume reconstruction (SVR) while accounting for interslice spatiotemporal coregistration. Validation of the technique is demonstrated in adult volunteers by comparing mean flows from SVR with 4D radial PCMRI with bias and limits of agreement being -1.1 ml/s and [-12.5 10.2] ml/s. Feasibility is demonstrated in late gestation fetuses by comparing SVR with 2D Cartesian PCMRI with bias and limits of agreement being -0.9 ml/min/kg and [-39.7 37.8] ml/min/kg for mean flows. With SVR, we also demonstrate complex flow pathways (such as parallel flow streams in the proximal inferior vena cava, preferential shunting of blood from the ductus venosus into the left side of the heart, and blood returning from the brain leaving the heart through the main pulmonary artery) for the first time in human fetal circulation. This method allows for comprehensive evaluation of the fetal circulation and enables future studies of fetal physiology.

2021 ◽  
Author(s):  
Datta Singh Goolaub ◽  
Jiawei Xu ◽  
Eric Schrauben ◽  
Davide Marini ◽  
John Kingdom ◽  
...  

Fetal development relies on a complex circulatory network and accurately assessing the flow distribution is important for understanding pathologies and potential therapies. In this paper, we demonstrate a method for volumetric multidimensional imaging of fetal flow with magnetic resonance imaging (MRI). Fetal application of MRI faces several challenges such as small vascular structures, unpredictable motion, and lack of traditional cardiac gating methods. Here, orthogonal multislice stacks are acquired with accelerated multidimensional radial phase contrast (PC) MRI. Each slice is reconstructed into flow sensitive time-series images (CINEs) with retrospective intraslice motion correction and image-based fetal cardiac gating. CINEs are then combined into a dynamic 3D volume using slice-to-volume reconstruction (SVR) while accounting for interslice spatiotemporal coregistration. Validation of the technique is demonstrated in adult volunteers by comparing mean flows from SVR with 4D radial PCMRI with bias and limits of agreement being -1.1 ml/s and [-12.5 10.2] ml/s. Feasibility is demonstrated in late gestation fetuses by comparing SVR with 2D Cartesian PCMRI with bias and limits of agreement being -0.9 ml/min/kg and [-39.7 37.8] ml/min/kg for mean flows. With SVR, we also demonstrate complex flow pathways (such as parallel flow streams in the proximal inferior vena cava, preferential shunting of blood from the ductus venosus into the left side of the heart, and blood returning from the brain leaving the heart through the main pulmonary artery) for the first time in human fetal circulation. This method allows for comprehensive evaluation of the fetal circulation and enables future studies of fetal physiology.


2014 ◽  
Vol 46 (16) ◽  
pp. 602-614 ◽  
Author(s):  
Yu-Qing Zhou ◽  
Lindsay S. Cahill ◽  
Michael D. Wong ◽  
Mike Seed ◽  
Christopher K. Macgowan ◽  
...  

This study used high-frequency ultrasound to evaluate the flow distribution in the mouse fetal circulation at late gestation. We studied 12 fetuses (embryonic day 17.5) from 12 pregnant CD1 mice with 40 MHz ultrasound to assess the flow in 11 vessels based on Doppler measurements of blood velocity and M-mode measurements of diameter. Specifically, the intrahepatic umbilical vein (UVIH), ductus venosus (DV), foramen ovale (FO), ascending aorta (AA), main pulmonary artery (MPA), ductus arteriosus (DA), descending thoracic aorta (DTA), common carotid artery (CCA), inferior vena cava (IVC), and right and left superior vena cavae (RSVC, LSVC) were examined, and anatomically confirmed by micro-CT. The mouse fetal circulatory system was found to be similar to that of the humans in terms of the major circuit and three shunts, but characterized by bilateral superior vena cavae and a single umbilical artery. The combined cardiac output (CCO) was 1.22 ± 0.05 ml/min, with the left ventricle (flow in AA) contributing 47.8 ± 2.3% and the right ventricle (flow in MPA) 52.2 ± 2.3%. Relative to the CCO, the flow percentages were 13.6 ± 1.0% for the UVIH, 10.4 ± 1.1% for the DV, 35.6 ± 2.4% for the DA, 41.9 ± 2.6% for the DTA, 3.8 ± 0.3% for the CCA, 29.5 ± 2.2% for the IVC, 12.7 ± 1.0% for the RSVC, and 9.9 ± 0.9% for the LSVC. The calculated flow percentage was 16.6 ± 3.4% for the pulmonary circulation and 31.2 ± 5.3% for the FO. In conclusion, the flow in mouse fetal circulation can be comprehensively evaluated with ultrasound. The baseline data of the flow distribution in normal mouse fetus serve as the reference range for future studies.


Author(s):  
James F. Glockner ◽  
Kazuhiro Kitajima ◽  
Akira Kawashima

Magnetic resonance imaging (MRI) provides excellent anatomic detail and soft tissue contrast for the evaluation of patients with renal disease. MRI needs longer scan time than computed tomography (CT); however, no radiation is involved. Gadolinium-based contrast agents (GBCAs) are used to help provide additional image contrast during MRI. MRI is indicated for characterization of renal mass, staging of malignant renal neoplasms, and determination of vena cava involvement by the renal tumour. Magnetic resonance (MR) angiography is widely accepted as a non-invasive imaging work-up of renal artery stenosis. MR urography is an alternative to CT urography to assess the upper urinary tract but does not identify urinary calculi. Diffusion-weighted imaging is a functional MR technique being used to characterize parenchymal renal disease and renal tumours. Nephrogenic systemic fibrosis is a rare but debilitating and potentially life-threatening condition which has been linked to exposure of GBCAs in patients with severe renal insufficiency. The risk versus benefit must be assessed before proceeding.


2017 ◽  
Vol 36 (9) ◽  
pp. 675-676
Author(s):  
Fernando Pivatto Júnior ◽  
Diogo Silva Piardi ◽  
Ângela Barreto Santiago Santos

2019 ◽  
Vol 128 (6) ◽  
pp. 1217-1222 ◽  
Author(s):  
Nobuko Fujita ◽  
Hideyuki Higuchi ◽  
Shiori Sakuma ◽  
Shunichi Takagi ◽  
Mahbub A. H. M. Latif ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document