scholarly journals A Floating Differential DAC Expands the Output Voltage Range for Electrochemical Measurements

Author(s):  
Norbert Sailer ◽  
Inge Siegl ◽  
Markus Haberler ◽  
Christoph Steffan

A floating differential DAC expands the output voltage range for electrochemical measurements

2021 ◽  
Author(s):  
Norbert Sailer ◽  
Inge Siegl ◽  
Markus Haberler ◽  
Christoph Steffan

A floating differential DAC expands the output voltage range for electrochemical measurements


2021 ◽  
Author(s):  
Norbert Sailer ◽  
Inge Siegl ◽  
Markus Haberler ◽  
Christoph Steffan

A floating differential DAC expands the output voltage range for electrochemical measurements


Author(s):  
Fouad Farah ◽  
Mustapha El Alaoui ◽  
Abdelali El Boutahiri ◽  
Mounir Ouremchi ◽  
Karim El Khadiri ◽  
...  

In this paper, we aim to make a detailed study on the evaluation and the characteristics of the non-inverting buck–boost converter. In order to improve the behaviour of the buck-boost converter for the three operating modes, we propose an architecture based on peak current-control. Using a three modes selection circuit and a soft start circuit, this converter is able to expand the power conversion efficiency and reduce inrush current at the feedback loop. The proposed converter is designed to operate with a variable output voltage. In addition, we use LDMOS transistors with low on-resistance, which are adequate for HV applications. The obtained results show that the proposed buck-boost converter perform perfectly compared to others architecture and it is successfully implemented using 0.18 μm CMOS TSMC technology, with an output voltage regulated to 12V and input voltage range of 4-20 V. The power conversion efficiency for the three operating modes buck, boost and buck-boost are 97.6%, 96.3% and 95.5% respectively at load current of 4A.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 856
Author(s):  
Jing-Yuan Lin ◽  
Yi-Chieh Hsu ◽  
Yo-Da Lin

In this paper, a triangular spread-spectrum mechanism is proposed to suppress the electromagnetic interference (EMI) of a DC-DC buck converter. The proposed triangular spread-spectrum mechanism, which is implemented in the chip, can avoid modifying the printed circuit board of switching regulators. In addition, a lower ripple of output voltage of switching regulators and a better system stability can be realized by the inductive DC resistance (DCR) current sensing circuit. The chip is fabricated by using TSMC 0.18-μm 1P6M CMOS technology. The chip area including PADs is 1.2 × 1.15 mm2. The input voltage range is 2.7~3.3 V and the output voltage is 1.8 V. The maximum load current is 700 mA. The off-chip inductor and capacitor are 3.3 μH and 10 μF, respectively. The experimental results demonstrate that the maximum spur of the proposed DC-DC buck converter with the triangular spread-spectrum mechanism improves to 14dBm. Moreover, the transient recovery time of step-up and step-down loads are both 5 μs. The measured maximum efficiency is 94% when the load current is 200 mA.


Sign in / Sign up

Export Citation Format

Share Document