scholarly journals Experimental investigation of an unusual induction effect and its interpretation as a necessary consequence of Weber electrodynamics

Author(s):  
Steffen Kühn

The magnetic force acts exclusively perpendicular to the direction of motion of a test charge, whereas the electric force does not depend on the velocity of the charge. This article provides experimental evidence that, in addition to these two forces, there is a third electromagnetic force that (i) is proportional to the velocity of the test charge and (ii) acts parallel to the direction of motion rather than perpendicular. This force cannot be explained by the Maxwell equations and the Lorentz force, since it is mathematically incompatible with this framework. However, this force is compatible with Weber electrodynamics and Ampère's original force law, as this older form of electrodynamics not only predicts the existence of such a force but also makes it possible to accurately calculate the strength of this force.

2021 ◽  
Author(s):  
Steffen Kühn

The magnetic force acts exclusively perpendicular to the direction of motion of a test charge, whereas the electric force does not depend on the velocity of the charge. This article provides experimental evidence that, in addition to these two forces, there is a third electromagnetic force that (i) is proportional to the velocity of the test charge and (ii) acts parallel to the direction of motion rather than perpendicular. This force cannot be explained by the Maxwell equations and the Lorentz force, since it is mathematically incompatible with this framework. However, this force is compatible with Weber electrodynamics and Ampère's original force law, as this older form of electrodynamics not only predicts the existence of such a force but also makes it possible to accurately calculate the strength of this force.


2021 ◽  
Vol 72 (6) ◽  
pp. 366-373
Author(s):  
Steffen Kühn

Abstract The magnetic component of the Lorentz force acts exclusively perpendicular to the direction of motion of a test charge, whereas the electric component does not depend on the velocity of the charge. This article provides experimental indication that, in addition to these two forces, there is a third electromagnetic force that (i) is proportional to the velocity of the test charge and (ii) acts parallel to the direction of motion rather than perpendicular. This force cannot be explained by the Maxwell equations and the Lorentz force, since it is mathematically incompatible with this framework. However, this force is compatible with Weber electrodynamics and Ampère’s original force law, as this older form of electrodynamics not only predicts the existence of such a force but also makes it possible to accurately calculate the strength of this force.


Author(s):  
Armin Schnider

This chapter summarizes current interpretations of all forms of confabulations discussed in the book and reviews the relationship between the four forms of memory-related confabulations. Experimental investigation has confirmed the dissociation between various types of false memories and considerably advanced the understanding of the mechanisms of some forms of confabulation, in particular behaviourally spontaneous confabulation and false statements in anosognosia. Overall, experimental evidence is scarce; many models have no controlled experimental basis or extend their proposed range of application well beyond the empirical evidence. The chapter concludes with a call for heightened respect of basic scientific standards in the research on confabulation.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 395-409 ◽  
Author(s):  
Mayeul Arminjon

AbstractAn alternative, scalar theory of gravitation has been proposed, based on a mechanism/interpretation of gravity as being a pressure force: Archimedes’ thrust. In it, the gravitational field affects the physical standards of space and time, but motion is governed by an extension of the relativistic form of Newton’s second law. This implies Einstein’s geodesic motion for free particles only in a constant gravitational field. In this work, equations governing the dynamics of a continuous medium subjected to gravitational and non-gravitational forces are derived. Then, the case where the non-gravitational force is the Lorentz force is investigated. The gravitational modification of Maxwell’s equations is obtained under the requirement that a charged continuous medium, subjected to the Lorentz force, obeys the equation derived for continuum dynamics under external forces. These Maxwell equations are shown to be consistent with the dynamics of a “free” photon, and thus with the geometrical optics of this theory. However, these equations do not imply local charge conservation, except for a constant gravitational field.


Integrals of the equations of propagation of electrical disturbances have been given by the present writer which express the electric and magnetic forces at any point outside a surface enclosing all the sources in terms of an electric current distribution and a magnetic current distribution over the surface. The result for a source at a point can be obtained by taking as the surface a sphere of very small radius with its centre at the point. This suggests that the equations representing Faraday’s laws can be written 1/V 2 ∂X/∂ t +4π i x = ∂ϒ/∂ y – ∂β/∂ z , 1/V 2 ∂X/∂ t + 4π i v =∂∝/∂ z – ∂ϒ/∂ x , 1/V 2 ∂z/∂ t – 4π i z = ∂β/∂ x – ∂∝/∂ y (1) – ∂∝/∂ t + 4π m x = ∂z/∂ y – ∂Y/∂y, – ∂β/∂t + 4π my = ∂X/∂ z – ∂Z/∂ x , – ∂ϒ/∂ t + 4π mz ∂Y/∂ x – ∂X/∂ y , (2) where X, Y, Z are the components of the electric force, α, β, γ are the components of the magnetic force, i x , i y , i z are the components of an electric current distribution, and m x , m y , m z are the components of a magnetic current distribution throughout the space. The object of the present communication is to express X, Y, Z, α, β, γ in terms of the electric current and magnetic current distributions and to apply the result to the discussion of the electric constants of a transparent medium. It is convenient to take instead of equations (1) and (2) the following equations, which include (1) and (2) as a particular case


1. When the motion of ions in a gas takes place in a magnetic field the rates of diffusion and the velocities due to an electric force may be determined by methods similar to those given in a previous paper. The effect of the magnetic field may be determined by considering the motion of each ion between collisions with molecules. The magnetic force causes the ions to be deflected in their free paths, and when no electric force is acting the paths are spirals, the axes being along the direction of the magnetic force. If H be the intensity of the magnetic field, e the charge, and m the mass of an ion, then the radius r of the spiral is mv /He, v being the velocity in the direction perpendicular to H. The distance that the ion travels in the interval between two collisions in a direction normal to the magnetic force is a chord of the circle of radius r . The average lengths of these chords may be reduced to any fraction of the projection of the mean free path in the direction of the magnetic force, so that the rate of diffusion of ions in the directions perpendicular to the magnetic force is less than the rate of diffusion in the direction of the force.


The value of the magnetic force at a point on the earth's surface, due to a simple oscillator placed on the surface with its axis normal to the surface, has been recently calculated by Love for a wave-length of 5 kilom. at certain distances from the oscillator. His results for the case of perfect conduction are the same as the corresponding series when the surface of the earth is supposed to be imperfectly conducting, The object of the present communication is to obtain the general formula for the case of imperfect conduction. Let r, θ, ϕ be the polar co-ordinates of a point, where r is its distance from the centre of the earth, θ its angular distance from the oscillator, E r , E θ , E ϕ the components of the electric force, and α, β, γ , the corresponding components of the magnetic force. Then, Since there is symmetry round the axis of the oscillator, α =0, β =0, γ =0; and throughout space outside the surface


Sign in / Sign up

Export Citation Format

Share Document