scholarly journals The Most Discriminant Components of Force Platform Data for Gait Based Person Re-identification

Author(s):  
Kayne Duncanson ◽  
Simon Thwaites ◽  
David Booth ◽  
Ehsan Abbasnejad ◽  
William Robertson ◽  
...  

Walking gait data measured using force platforms is a promising means for person re-identification in authentication and surveillance scenarios. We aimed to determine the most discriminant components of force platform data using a two-stream Convolutional Recurrent Neural Network (KineticNet). Each network in the two-stream architecture extracts features pertaining to a single stance phase and then these features are fused to represent the entire gait cycle. Over two sessions, ground reaction forces (Fx, Fy, Fz), moments (Mx, My, Mz), and center of pressure coordinates (Cx, Cy) were acquired from 118 participants as they walked our laboratory five times at preferred speed. For each participant and each session, up to three samples were reserved for network training, leaving one sample for network validation and one sample for network testing. KineticNet’s performance was evaluated using both individual component and multi-component inputs before ablation studies were conducted on its architecture. Fz was the most discriminant individual component, and re-identification using Fz, Fy, and Cy together was the most accurate overall at 96.02%. These results warrant further investigation into the utility of force platforms as an accessory or alternative to video cameras for gait based person re-identification.

2021 ◽  
Author(s):  
Kayne Duncanson ◽  
Simon Thwaites ◽  
David Booth ◽  
Ehsan Abbasnejad ◽  
William Robertson ◽  
...  

Walking gait data measured using force platforms is a promising means for person re-identification in authentication and surveillance scenarios. We aimed to determine the most discriminant components of force platform data using a two-stream Convolutional Recurrent Neural Network (KineticNet). Each network in the two-stream architecture extracts features pertaining to a single stance phase and then these features are fused to represent the entire gait cycle. Over two sessions, ground reaction forces (Fx, Fy, Fz), moments (Mx, My, Mz), and center of pressure coordinates (Cx, Cy) were acquired from 118 participants as they walked our laboratory five times at preferred speed. For each participant and each session, up to three samples were reserved for network training, leaving one sample for network validation and one sample for network testing. KineticNet’s performance was evaluated using both individual component and multi-component inputs before ablation studies were conducted on its architecture. Fz was the most discriminant individual component, and re-identification using Fz, Fy, and Cy together was the most accurate overall at 96.02%. These results warrant further investigation into the utility of force platforms as an accessory or alternative to video cameras for gait based person re-identification.


2014 ◽  
Vol 36 (11) ◽  
pp. 1530-1535 ◽  
Author(s):  
David Villeger ◽  
Antony Costes ◽  
Bruno Watier ◽  
Pierre Moretto

2017 ◽  
Author(s):  
Damiana A dos Santos ◽  
Claudiane A Fukuchi ◽  
Reginaldo K Fukuchi ◽  
Marcos Duarte

This article describes a public data set with the three-dimensional kinematics of the whole body and the ground reaction forces (with a dual force platform setup) of subjects standing still for 60 s in different conditions, in which the vision and the standing surface were manipulated. Twenty-seven young subjects and 22 old subjects were evaluated. The data set comprises a file with metadata plus 1,813 files with the ground reaction force (GRF) and kinematics data for the 49 subjects (three files for each of the 12 trials plus one file for each subject). The file with metadata has information about each subject’s sociocultural, demographic, and health characteristics. The files with the GRF have the data from each force platform and from the resultant GRF (including the center of pressure data). The files with the kinematics have the three-dimensional position of the 42 markers used for the kinematic model of the whole body and the 73 calculated angles. In this text, we illustrate how to access, analyze, and visualize the data set. All the data is available at Figshare (DOI: 10.6084/m9.figshare.4525082 ), and a companion Jupyter Notebook (available at https://github.com/demotu/datasets ) presents the programming code to generate analyses and other examples.


2017 ◽  
Author(s):  
Damiana A dos Santos ◽  
Claudiane A Fukuchi ◽  
Reginaldo K Fukuchi ◽  
Marcos Duarte

This article describes a public data set with the three-dimensional kinematics of the whole body and the ground reaction forces (with a dual force platform setup) of subjects standing still for 60 s in different conditions, in which the vision and the standing surface were manipulated. Twenty-seven young subjects and 22 old subjects were evaluated. The data set comprises a file with metadata plus 1,813 files with the ground reaction force (GRF) and kinematics data for the 49 subjects (three files for each of the 12 trials plus one file for each subject). The file with metadata has information about each subject’s sociocultural, demographic, and health characteristics. The files with the GRF have the data from each force platform and from the resultant GRF (including the center of pressure data). The files with the kinematics have the three-dimensional position of the 42 markers used for the kinematic model of the whole body and the 73 calculated angles. In this text, we illustrate how to access, analyze, and visualize the data set. All the data is available at Figshare (DOI: 10.6084/m9.figshare.4525082 ), and a companion Jupyter Notebook (available at https://github.com/demotu/datasets ) presents the programming code to generate analyses and other examples.


1981 ◽  
Vol 5 (1) ◽  
pp. 19-22 ◽  
Author(s):  
R. E. Major ◽  
J. Stallard ◽  
G. K. Rose

The variation of ground reaction forces with time for a complete hgo gait cycle using crutches has been synthesized from video recordings and force platform data. This has led to an understanding of the dynamics of hgo ambulation. The results show that when a patient uses the orthosis the crutches provide a subtle control mechanism taking maximum advantage of forward momentum and produce small propulsive forces when needed to make up energy losses.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3626 ◽  
Author(s):  
Damiana A. dos Santos ◽  
Claudiane A. Fukuchi ◽  
Reginaldo K. Fukuchi ◽  
Marcos Duarte

This article describes a public data set containing the three-dimensional kinematics of the whole human body and the ground reaction forces (with a dual force platform setup) of subjects who were standing still for 60 s in different conditions, in which the subjects’ vision and the standing surface were manipulated. Twenty-seven young subjects and 22 old subjects were evaluated. The data set comprises a file with metadata plus 1,813 files with the ground reaction force (GRF) and kinematics data for the 49 subjects (three files for each of the 12 trials plus one file for each subject). The file with metadata has information about each subject’s sociocultural, demographic, and health characteristics. The files with the GRF have the data from each force platform and from the resultant GRF (including the center of pressure data). The files with the kinematics contain the three-dimensional positions of 42 markers that were placed on each subject’s body and 73 calculated joint angles. In this text, we illustrate how to access, analyze, and visualize the data set. All the data is available at Figshare (DOI:10.6084/m9.figshare.4525082), and a companion Jupyter Notebook presents programming code to access the data set, generate analyses and other examples. The availability of a public data set on the Internet that contains these measurements and information about how to access and process this data can potentially boost the research on human postural control, increase the reproducibility of studies, and be used for training and education, among other applications.


1992 ◽  
Vol 25 (6) ◽  
pp. 671
Author(s):  
B.P.E. David Andrews ◽  
James J. Dowling

2014 ◽  
Vol 27 (04) ◽  
pp. 257-262 ◽  
Author(s):  
J. Y. W. Kim ◽  
T. C. Garcia-Nolan ◽  
S. Y. Kim ◽  
K. Hayashi ◽  
P. L. Hitchens ◽  
...  

SummaryObjectives: To develop a platform that used standard size force plates for large breed dogs to capture ground reaction force data from any size dog.Methods: A walkway platform was constructed to accommodate two force plates (60 cm x 40 cm) positioned in series to a variety of smaller sizes. It was constructed from a custom wood frame with thick aluminium sheet force plate covers that prevented transfer of load to the force plate, except for rectangular windows of three different dimensions. A friction study was performed to ensure plates did not translate relative to one another during gait trials. A prospective, observational, single crossover study design was used to compare the effect of force platform configuration (full plate size [original plate], half plate size [modified plate]) on ground reaction forces using eight adult healthy Labrador Retriever dogs.Results: Slippage of the steel plate on the force plate did not occur. Peak propulsion force was the only kinetic variable statistically different between the full size and half sized platforms. There were no clinically significant differences between the full and half force platforms for the variables and dogs studied.Discussion and conclusion: The modified force platform allows the original 60 x 40 cm force plate to be adjusted effectively to a 30 x 40 cm, 20 x 40 cm and 15 x 40 cm sized plate with no clinically significant change in kinetic variables. This modification that worked for large breed dogs will potentially allow kinetic analysis of a large variety of dogs with different stride lengths.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242215
Author(s):  
A. M. van Leeuwen ◽  
J. H. van Dieën ◽  
A. Daffertshofer ◽  
S. M. Bruijn

Step-by-step foot placement control, relative to the center of mass (CoM) kinematic state, is generally considered a dominant mechanism for maintenance of gait stability. By adequate (mediolateral) positioning of the center of pressure with respect to the CoM, the ground reaction force generates a moment that prevents falling. In healthy individuals, foot placement is complemented mainly by ankle moment control ensuring stability. To evaluate possible compensatory relationships between step-by-step foot placement and complementary ankle moments, we investigated the degree of (active) foot placement control during steady-state walking, and under either foot placement-, or ankle moment constraints. Thirty healthy participants walked on a treadmill, while full-body kinematics, ground reaction forces and EMG activities were recorded. As a replication of earlier findings, we first showed step-by-step foot placement is associated with preceding CoM state and hip ab-/adductor activity during steady-state walking. Tight control of foot placement appears to be important at normal walking speed because there was a limited change in the degree of foot placement control despite the presence of a foot placement constraint. At slow speed, the degree of foot placement control decreased substantially, suggesting that tight control of foot placement is less essential when walking slowly. Step-by-step foot placement control was not tightened to compensate for constrained ankle moments. Instead compensation was achieved through increases in step width and stride frequency.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0242892
Author(s):  
Marcus Fraga Vieira ◽  
Fábio Barbosa Rodrigues ◽  
Alfredo de Oliveira Assis ◽  
Eduardo de Mendonça Mesquita ◽  
Thiago Santana Lemes ◽  
...  

The purpose of this study was to investigate the effects of different vertical positions of an asymmetrical load on the anticipatory postural adjustments phase of gait initiation. Sixty-eight college students (32 males, 36 females; age: 23.65 ± 3.21 years old; weight: 69.98 ± 8.15 kg; height: 1.74 ± 0.08 m) were enrolled in the study. Ground reaction forces and moments were collected using two force platforms. The participants completed three trials under each of the following random conditions: no-load (NL), waist uniformly distributed load (WUD), shoulder uniformly distributed load (SUD), waist stance foot load (WST), shoulder stance foot load (SST), waist swing foot load (WSW), and shoulder swing foot load (SSW). The paired Hotelling’s T-square test was used to compare the experimental conditions. The center of pressure (COP) time series were significantly different for the SUD vs. NL, SST vs. NL, WST vs. NL, and WSW vs. NL comparisons. Significant differences in COP time series were observed for all comparisons between waist vs. shoulder conditions. Overall, these differences were greater when the load was positioned at the shoulders. For the center of mass (COM) time series, significant differences were found for the WUD vs. NL and WSW vs. NL conditions. However, no differences were observed with the load positioned at the shoulders. In conclusion, only asymmetrical loading at the waist produced significant differences, and the higher the extra load, the greater the effects on COP behavior. By contrast, only minor changes were observed in COM behavior, suggesting that the changes in COP (the controller) behavior are adjustments to maintain the COM (controlled object) unaltered.


Sign in / Sign up

Export Citation Format

Share Document