scholarly journals Nonlinear Analytical Model of Localized Sub-THz and THz Rectifications in FET Power Detectors

Author(s):  
tamer elkhatib

<div>A nonlinear analytical model for THz FET power detectors based on their distributed RC network is presented. This empirical model works well for both drain-unbiased and drain-biased THz FET responses. The physics-based analysis reveals that localized THz rectifications in long channel transistors may be mathematically expressed in the same way as regular RF frequency rectifications of a single lumped device. However, the one lumped FET model can’t work properly at THz frequencies without correct definitions of THz signals on its terminals and independently considers localized rectifications on the source and drain sides. An improved compact one lumped THz FET power detector model with additional Schottky diodes at the source and drain terminals is presented. THz FET detector can also perform a simultaneous self-amplification (active rectification) of the localized THz rectified dc signal when operates in the saturation regime beyond its unity gain frequency. A novel analytical expression for the localized THz dc rectified response is developed for FETs operating in the saturation regime. The presented physics-based model agrees excellently with the measured experimental results of GaAs HEMT transistors at 1.6THz under arbitrary biasing conditions. Many novel electronic designs can be implemented for Millimeter-wave and THz technologies based on the physical FET's nonlinear nature in this frequency range</div>

2021 ◽  
Author(s):  
tamer elkhatib

<div>A nonlinear analytical model for THz FET power detectors based on their distributed RC network is presented. This empirical model works well for both drain-unbiased and drain-biased THz FET responses. The physics-based analysis reveals that localized THz rectifications in long channel transistors may be mathematically expressed in the same way as regular RF frequency rectifications of a single lumped device. However, the one lumped FET model can’t work properly at THz frequencies without correct definitions of THz signals on its terminals and independently considers localized rectifications on the source and drain sides. An improved compact one lumped THz FET power detector model with additional Schottky diodes at the source and drain terminals is presented. THz FET detector can also perform a simultaneous self-amplification (active rectification) of the localized THz rectified dc signal when operates in the saturation regime beyond its unity gain frequency. A novel analytical expression for the localized THz dc rectified response is developed for FETs operating in the saturation regime. The presented physics-based model agrees excellently with the measured experimental results of GaAs HEMT transistors at 1.6THz under arbitrary biasing conditions. Many novel electronic designs can be implemented for Millimeter-wave and THz technologies based on the physical FET's nonlinear nature in this frequency range</div>


2015 ◽  
Vol 17 (5) ◽  
pp. 053011 ◽  
Author(s):  
Lukas Medišauskas ◽  
Felipe Morales ◽  
Alicia Palacios ◽  
Alberto González-Castrillo ◽  
Lev Plimak ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1084
Author(s):  
Toky Rabenimanana ◽  
Vincent Walter ◽  
Najib Kacem ◽  
Patrice Le Moal ◽  
Joseph Lardiès

This paper presents a nonlinear analytical model of MEMS mass sensor, which is composed of two cantilevers of 98 µm and 100 µm length, 20 µm width and 1.3 µm thick. They are connected by a coupling beam and only the shortest cantilever is actuated by a combined AC-DC voltage. The DC voltage is used to equilibrate the system and the phenomenon of mode localization is investigated when a mass perturbation is applied. The sensor is modeled as a continuous system with beam theory and non-ideal boundary conditions are considered by using flexible supports. With a low AC voltage of 10 mV, a DC voltage of 5.85 V can counterbalance the length difference. This DC voltage decreases at 5.60 V when we increase the AC voltage, due to the effect of electrostatic nonlinearities. For a relative added mass of 0.1%, the amplitude change in the two cantilevers is more important when the coupling is weaker.


2020 ◽  
pp. 106744
Author(s):  
Wei Wang ◽  
Xiao-Xi Li ◽  
Zhi-Qiang Xiao ◽  
Wei Huang ◽  
Zhi-Gang Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document