mode localization
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 51)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Alexey Wolf ◽  
Mikhail Skvortsov ◽  
Ivan Lobach ◽  
Alexandr Dostovalov ◽  
Sergey Babin

Author(s):  
Hongyun Sun ◽  
Huiqun Yuan

This paper deals with the coupling vibration characteristic of the disk-blade-shaft integration rotor. First, a reduced-order model (ROM) based on an improved hybrid interface component mode synthesis method (IHISCMSM) is carried out, which takes the prestress effect into account. The frequency of the disk-blade-shaft integration rotor at different rotating speeds are calculated and the influence of selecting different mode truncation numbers is investigated. In order to quantitatively evaluate the coupling degree of blade and disk, the coupling factor is defined from the perspective of strain energy, and the influence of prestress on system’s dynamic is discussed. Then, an experimental modal analysis is performed on blades to identify the mistuning parameters, and the mode localization of the disk-blade-shaft integration rotor is analyzed with and without blade mistuning. The results indicate that there are several types of coupling modes among blade, disk and shaft of the integration rotor. After considering the prestress, the frequency increases, and the axial coupling vibration degree and radial coupling vibration degree of the integration rotor change. The mode localization of mistuned rotor is more likely to occur in the modes dominated by mistuning stage blades. There also exists a subtle mode localization phenomenon for tuned integration rotor.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ekaterina E. Maslova ◽  
Mikhail V. Rybin ◽  
Andrey A. Bogdanov ◽  
Zarina F. Sadrieva

Abstract We study the effect of structural disorder on the transition from the bound states in the continuum (BICs) to quasi-BICs by the example of the periodic photonic structure composed of two layers of parallel dielectric rods. We uncover the specificity in the robustness of the symmetry-protected and accidental BICs against various types of structural disorder. We analyze how the spatial mode localization induced by the structural disorder results in an effective reduction of the system length and limits the Q factor of quasi-BICs. Our results are essential for the practical implementation of BICs especially in natural and self-assembled photonic structures, where the structural disorder plays a crucial role.


Author(s):  
Hien M Phan ◽  
Li He

Abstract There seems to be a lack of clear and systematic understanding of physical behaviour and mechanisms of mistuned bladerows, particularly in the context of the aerodynamic mistuning versus the structural (frequency) mistuning. A high-fidelity fully-coupled method is desirable to investigate the vibration characteristics of aeroelasticity problems with strong fluid-structure interaction effects, as well as blade mistuning effects. In the present work, the direct nonlinear time-domain fully-coupled method is adopted to investigate the dynamics mechanism of a mistuned oscillating cascade. The main objectives are two-folds, firstly to elucidate the basic vibration characteristics of a mistuned bladerow, and secondly to examine the aeroelastic effects of mistuning. Three conditions of interest are considered: a) the structural mistuning only, b) the aerodynamic mistuning only, and c) a combination of the two. The present results show that firstly a mistuned configuration tends to vibrate with the same frequency and a predominantly constant inter-blade phase-angle. Vibration amplitudes of the blades vary significantly with a strong mode localization effect for the structural mistuning. For the concurrent structural-aerodynamic mistuning, the localization is stronger than in the standalone structural mistuning case. Secondly, a monotonic increase of the aeroelastic stability with the structural mistuning magnitude is observed. On the other hand, the aerodynamically mistuned cascade shows a stabilizing effect with a small amount of mistuning but exhibits a destabilizing effect with a large mistuning. Furthermore... see paper for the full abstract


2021 ◽  
Author(s):  
W. Zhang ◽  
L. Ma ◽  
Y. F. Zhang ◽  
K. Behdinan

Abstract In this paper, the nonlinear and dual-parameter chaotic vibrations are investigated for the blisk structure with the lumped parameter model under combined the aerodynamic force and varying rotating speed. The varying rotating speed and aerodynamic force are respectively simplified to the parametric and external excitations. The nonlinear governing equations of motion for the rotating blisk are established by using Hamilton’s principle. The free vibration and mode localization phenomena are studied for the tuning and mistuning blisks. Due to the mistuning, the periodic characteristics of the blisk structure are destroyed and uniform distribution of the energy is broken. It is found that there is a positive correlation between the mistuning variable and mode localization factor to exhibit the large vibration of the blisk in a certain region. The method of multiple scales is applied to derive four-dimensional averaged equations of the blisk under 1:1 internal and principal parametric resonances. The amplitude-frequency response curves of the blisk are studied, which illustrate the influence of different parameters on the bandwidth and vibration amplitudes of the blisk. Lyapunov exponent, bifurcation diagrams, phase portraits, waveforms and Poincare maps are depicted. The dual-parameter Lyapunov exponents and bifurcation diagrams of the blisk reveal the paths leading to the chaos. The influences of different parameters on the bifurcation and chaotic vibrations are analyzed. The numerical results demonstrate that the parametric and external excitations, rotating speed and damping determine the occurrence of the chaotic vibrations and paths leading to the chaotic vibrations in the blisk.


2021 ◽  
Author(s):  
Ming Lyu ◽  
Jian Zhao ◽  
Najib Kacem ◽  
Pengbo Liu

Abstract A novel dual-mass accelerometer is proposed while exploiting the phenomenon of mode localization in two electrostatically coupled resonators with an adjustable coupling strength. The external inertial forces are transmitted differentially to the resonators in term of axial load change through the two levering mechanisms, breaking the balanced state and resulting in a drastic change in the amplitudes of the two resonators. Based on the Euler Bernoulli theory, the governing equations of the coupled system are derived and numerically solved. The sensitivity in term of relative shift of amplitude ratio can be improved by 4 orders of magnitude compared to frequency shift. Finally, the effect of the quality factor on the sensor dynamics has also been investigated, and the results show that it only affects the vibration magnitude of the resonators while operating below the critical amplitude.


2021 ◽  
Author(s):  
H. M. Phan ◽  
L. He

Abstract The uncoupled phase-shifted single-passage simulation is commonly used for turbomachinery aeroelastic problems. However, it has difficulties in dealing with unconventional phenomena such as strong fluid-structure interaction effects as well as blade mistuning effects. Regarding mistuning effects, structural mistuning has been studied extensively while aerodynamic mistuning has received far less attention. There seems to be a lack of clear and systematic understanding of physical behaviour and mechanisms of mistuned bladerows, particularly in the context of the aerodynamic mistuning versus structural one. In the present work, direct fully-coupled method is adopted to investigate the dynamics mechanism of a mistuned oscillating cascade. Both structurally and aerodynamically mistuned cascades show that the blades would couple and oscillate at a unique frequency and a constant inter-blade phase angle regardless of the individual blade’s eigen-frequency. The vibration amplitudes of blades of a mistuned row are different when excited. For structural mistuning, the mode localization effect is seen to be responsible for a monotonic increase of cascade aeroelastic stability with mistuning. On the other hand, the aerodynamically mistuned cascade shows a stabilizing effect at small amount of mistuning but exhibits a destabilizing effect at large mistuning. Such non-monotonic tendency could be explained using the aero-damping decomposition by the influence coefficient approach. At low reduced frequency, there is a striking difference between the tuned and aero-mistuned cascade. Although the tuned cascade is stable, the aero-mistuned cascade may experience flutter. A close inspection of the aero-mistuned cascade flutter reveals that there are two oscillating waves forming a beating signal.


Author(s):  
Ying-Xin Zhu ◽  
Hao-Ran Jin ◽  
◽  
◽  

The demand for fluency in human–computer interaction is on an increase globally; thus, the active localization of the speaker by the machine has become a problem worth exploring. Considering that the stability and accuracy of the single-mode localization method are low, while the multi-mode localization method can utilize the redundancy of information to improve accuracy and anti-interference, a speaker localization method based on voice and image multimodal fusion is proposed. First, the voice localization method based on time differences of arrival (TDOA) in a microphone array and the face detection method based on the AdaBoost algorithm are presented herein. Second, a multimodal fusion method based on spatiotemporal fusion of speech and image is proposed, and it uses a coordinate system converter and frame rate tracker. The proposed method was tested by positioning the speaker stand at 15 different points, and each point was tested 50 times. The experimental results demonstrate that there is a high accuracy when the speaker stands in front of the positioning system within a certain range.


Sign in / Sign up

Export Citation Format

Share Document