scholarly journals Genetic Variability, Heritability and Association of Quantitative Traits in Maize (Zea mays L) Genotypes: Review Paper

2021 ◽  
Vol 3 (2) ◽  
pp. 38-46
Author(s):  
 Mamud Aman
Heliyon ◽  
2021 ◽  
pp. e07939
Author(s):  
Bigul Thapa Magar ◽  
Subash Acharya ◽  
Bibek Gyawali ◽  
Kiran Timilsena ◽  
Jharana Upadhayaya ◽  
...  

2001 ◽  
Vol 29 (1-2) ◽  
pp. 77-84
Author(s):  
Nenad Vasić ◽  
Djordje Jocković ◽  
Mile Ivanović ◽  
Luiz Peternelli ◽  
Milisav Stojaković ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 182
Author(s):  
Jan Bocianowski ◽  
Kamila Nowosad ◽  
Barbara Wróbel ◽  
Piotr Szulc

Microsatellite or simple sequence repeat (SSR) markers have wide applicability for genetic analysis in crop plant improvement strategies. Marker-assisted selection is an important tool for plant breeders to increase the efficiency of a breeding process, especially for multigenic traits, highly influenced by the environment. In this paper, the relationships between SSR markers and 26 quantitative traits of hybrid maize varieties (Zea mays L.) were analyzed. Association analyses were performed based on 30 SSR primers in a set of thirteen hybrid maize varieties. A total of 112 SSR markers were detected in these genotypes. The number of alleles per locus ranged from 1 to 17, with the average number of alleles per locus equal to 3.7. The number of molecular markers associated with observed traits ranged from 1 (for the number of kernels in row, ears weight and fresh weight of one plant) to 14 (for damage of maize caused by P. nubilalis) in 2016 as well as from 1 (for soil plant analysis development—SPAD, the number of grains in ear and fresh weight of one plant) to 12 (for carotenoids content) in 2017. The sum of statistically significant associations between SSR markers and at least one trait was equal to one hundred sixty in 2016 as well as one hundred twenty-five in 2017. Marker trait associations (MTAs) were found on the basis of regression analysis. The proportion of the total phenotypic variances of individual traits explained by the marker ranged from 24.4% to 77.7% in the first year of study and from 24.3% to 77.9% in 2017. Twenty-two SSR markers performed a significant effect on at least one tested trait in both years of experiment. The three markers (phi021/4, phi036/3, and phi061/2) can be a good tool in marker-assisted selection because they allow simultaneous selection for multiple traits in both years of study, such as the number of kernels in row and the number of grains in ear (phi021/4), the number of plant after germination, the number of plants before harvest, and the number of ears (phi036/3), as well as moisture of grain and length of ears (phi061/2).


Author(s):  
Mekuannet Belay Kebede ◽  
Degefa Gebissa

Genetic improvement in components of economic importance along with maintaining a sufficient amount of variability is always the desired objective in the any maize (Zea mays L.) breeding program which will be handled under the conditions of Haramaya, Eastern Ethiopia. Therefore, an experiment was conducted using (27) and (3) check/control varieties to determine the genetic variability of maize genotypes at Haramaya, eastern Ethiopia. The study results revealed that significantly the tallest plant heights for (PH) were recorded from (3) (170 cm) and (18) (167.5 cm) genotypes whereas the shortest PH were recorded from (13) (117.5 cm) and (23) genotypes (120 cm). Good plant aspects (PA) were obtained from genotype 12, 22 and 26 (PA-1.5) and poor PA were attained from genotype 1 (PA-2.5). Besides, genetic and phenotypic variances were estimated for seven components. The highest genotypic coefficients variation (GCV) and phenotypic coefficients of variation (PCV) were calculated from grain yield (GY – 23.39%). Comparatively the higher GY were attained from the genotypes of 3, 9 and 12. It can be concluded that almost all components of the PCV are greater than the GCV. Superior selected genotypes are recommended to the researchers /breeders to develop disease resistant and high yielder varieties to increase maize production by farmers under Haramaya and other similar agroecologies.


2020 ◽  
Vol 5 (01) ◽  
pp. 45-49
Author(s):  
Ankit Kumar ◽  
Amit Tomar

The results revealed that parents namely, TSK-10, TSK-27, New Blue-II, Kurara and TSK-109 were found highly genetic diverse for days to 50% tasseling, days to 50% silking, days to 755 dry husk. The parents namely, TSK-109, Kurara, New Blue-II and TSK-10 were found highly genetic diverse for plant height (cm), cob height, number of cobs per plant and number of grains per cob. The parents namely, Kurara, TSK-109, TSK-10, New Blue-II and TSK-27 were found highly genetic diverse for shelling percentage, grain yield per plant, grain yield per cob and 100-grain weight.


Sign in / Sign up

Export Citation Format

Share Document