scholarly journals CONSTRUCTION OF GRAIN SEEDER COULTER WITH A HINGE JOINT OF A SEED GUIDE AND A SOIL CULTIVATOR WITH THE COULTER BODY

2021 ◽  
pp. 151-156
Author(s):  
N.P. Laryushin ◽  
I.Yu. Kukushkin ◽  
A. V. Shukov ◽  
T.A. Kiryukhina
Keyword(s):  
2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Hanbin Yi ◽  
Chuanxi Li ◽  
Li Dai

To investigate whether shallow hinge joint fracture was caused by shear stress or flexural stress, during the demolition and reconstruction of Xiaojiang River bridge, two original girders were collected and shipped to the lab, and the shallow hinge joint between the two girders was rebuilt. Tests were performed to investigate the cracking load, failure mode, and force transmission performance of the hollow slab girder and shallow hinge joint under vehicle load. The test result shows that under eccentric load, when the load increases to 365 kN, the midspan bottom slab of the testing girder starts to fracture; as the load increases to 560 kN, the roof slab of the testing girder starts to fracture; the hinge joint has a maximum horizontal opening of 0.153 mm and vertical relative displacement of 0.201 mm; during the entire test loading process, the shallow hinge joint structure does not develop fracture and shear failure; and the shallow hinge structure demonstrates excellent shear stress transmission performance. In addition, based on hinge slab theory, the hinge joint internal force under vehicle load was calculated. Based on ACI 318-05 specification, CAN/CSA-S6-00, and JTG D61-2005, the hinge joint shear bearing capacity was calculated. Hinge joint stress resistances calculated from the three specifications all exceed the internal force. Among them, the calculation results from ACI 318-05 and CAN/CSA-S6-00 are similar, while the result from JTG D61-2005 specification significantly exceeds the internal force, which is mainly because the designed concrete direct shear strength fvd in the Chinese specification does not consider factors such as bonding surface coarseness, concrete pouring sequence, and material properties. Theoretical calculations and tests show that the actual failure mode of the shallow hinge joint in prefabricated hollow slab girder bridges is not caused by shear stress.


Author(s):  
Diego Maria Barbieri ◽  
Yuechi Chen ◽  
Enrico Mazzarolo ◽  
Bruno Briseghella ◽  
Angelo Marcello Tarantino

Hollow core slab bridges are constructed by placing prefabricated or prestressed box beams adjacent to each other, grouting the small longitudinal space (hinge-joint) between the slabs and casting a reinforced concrete deck. The longitudinal cracking appearing at hinge-joint locations leads to a premature deterioration of the deck. This paper presents a theoretical and experimental study of a hollow core slab bridge composed of three beams and a cast-in-place deck. A real-size specimen was built according to Chinese code specifications. The behavior of the longitudinal joints was investigated by applying the standard vehicle load. The tests do not highlight any longitudinal cracks. A finite element model was created from the experimental data. A finite element parametric analysis revealed some practical design indications regarding the following inputs: deck thickness, concrete strength, and hinge-joint steel bars. Furthermore, these analyses testify that C-shape and X-shape stirrups do not play an active role in preventing the joint longitudinal cracks. This research confirms the reliability of the design method, at least for static loads, while further studies are needed to investigate the effect of both periodical loadings and different temperatures on upper and lower surfaces of the beams.


2012 ◽  
Vol 72 ◽  
pp. 119-129 ◽  
Author(s):  
Hsen-Han Khoo ◽  
Charles Clifton ◽  
John Butterworth ◽  
Gregory MacRae ◽  
George Ferguson

2012 ◽  
Vol 446-449 ◽  
pp. 1685-1689
Author(s):  
Yu Qing Zhang ◽  
Yong Ning Mi ◽  
Lin Zhao ◽  
Kan Liu ◽  
Guo Li Wang

Sign in / Sign up

Export Citation Format

Share Document