scholarly journals Data Forwarding in Wireless Body Area Networks

2020 ◽  
Vol 2 (2) ◽  
pp. 80-87
Author(s):  
Dr. Joy Iong Zong Chen ◽  
Lu-Tsou Yeh

One of the most crucial application of Wireless Body Area Networks in healthcare applications is the process of monitoring human bodies and gather physiological data. Network performance degradation in the form of energy efficiency and latency are caused because of energy depletions which arises due to limited energy resource availability. The heterogeneity of body sensors will lead to variation in the rate of energy consumption. Based on this, a novel Data Forwarding Strategy is presented in this research work to enhance collaborative WBAN operations, improve network lifetime and restrict energy consumption of the sensors. In this paper, we have contributed towards reducing the size of data to be transmitted by compressed sensing and selection of relay sensor based on sampling frequency, energy levels and sensor importance. Using the proposed methodology, it is possible to improve both reliability and energy-efficiency of WBAN data transmission. moreover, it is also possible to adapt to the changing WBAN topologies when the proposed methodology is used, balancing energy efficiency and consumption.

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 404
Author(s):  
Yasmeen Al-Saeed ◽  
Eman Eldaydamony ◽  
Ahmed Atwan ◽  
Mohammed Elmogy ◽  
Osama Ouda

Wireless Body Area Networks (WBANs) are increasingly employed in different medical applications, such as remote health monitoring, early detection of medical conditions, and computer-assisted rehabilitation. A WBAN connects a number of sensor nodes implanted in and/or fixed on the human body for monitoring his/her physiological characteristics. Although medical healthcare systems could significantly benefit from the advancement of WBAN technology, collecting and transmitting private physiological data in such an open environment raises serious security and privacy concerns. In this paper, we propose a novel key-agreement protocol to secure communications among sensor nodes of WBANs. The proposed protocol is based on measuring and verifying common physiological features at both sender and recipient sensors prior to communicating. Unlike existing protocols, the proposed protocol enables communicating sensors to use their previous session pre-knowledge for secure communication within a specific period of time. This will reduce the time required for establishing the shared key as well as avoid retransmitting extracted features in the medium and hence thwarting eavesdropping attacks while maintaining randomness of the key. Experimental results illustrate the superiority of the proposed key agreement protocol in terms of both feature extraction and key agreement phases with an accuracy of 99.50% and an error rate of 0.005%. The efficacy of the proposed protocol with respect to energy and memory utilization is demonstrated compared with existing key agreement protocols.


Sign in / Sign up

Export Citation Format

Share Document