scholarly journals EXPERIMENTAL STUDIES OF THERMAL TRANSMISSION THROUGH A MOBILE HEAT EXCHANGE SURFACE

Author(s):  
Borislav Kustov ◽  
Mihail Gerasimchuk

Experimental studies of heat transfer in a heat exchanger of the "pipe-in-pipe" type with a rotating tube have been performed. It is established that in the investigated range of hot coolant flow rate, the rotation of the pipe makes it possible to increase the values of the heat transfer coefficients by 19-28%.

2021 ◽  
pp. 52-59
Author(s):  
U. L. Moshentsev ◽  
А. А. Gogorenko

Aspects of designing an onboard heat exchangers for the cooling system of the ship's power plant are considered. Such heat exchangers must be designed in accordance with the classical foundations of the theory and calculation of heat exchangers. At the same time, the key design points are considered by well-known sources in a separate setting related to the peculiarities of their consideration as specific elements of the theory. In this regard, they are not united by a single system necessary for their use in specific design problems. Accordingly, the paper highlights, concretizes and refines the parameters of the formulas used in the computational problem. In particular, the calculation of the heat transfer coefficient from the seawater side is performed according to the formula that gives the average value of the coefficient for the vessel. The heat transfer coefficients from the side of the coolant of the inner loop are calculated according to the well-known formulas recommended for calculating heat transfer in channels of any shape. Attention is drawn to the fact that heat transfer from the hold side goes to the finned wall. In this regard, the heat transfer coefficients determined by the indicated formulas should be considered convective. The transition to the given values of the heat transfer coefficients should be carried out considering the efficiency of the finned heat exchange surface, which considers the uneven temperature of various sections of the heat exchange surface. The calculation of heat transfer was carried out considering possible surface contamination. The procedure for performing the calculation steps is proposed, as a result of which the dimensions and heat engineering parameters of the heat exchanger can be determined. It was found that the use of the considered proposals leads to results close to those recommended by authoritative sources. The above proposals do not contradict the experience of creating and designing such structures. The recommendations can be used for educational and practical purposes by those who design heat exchangers of similar designs.


2021 ◽  
Vol 1021 ◽  
pp. 160-170
Author(s):  
Amer Hameed Majeed ◽  
Yasmin Hamed Abd

The effect of adding nanomaterial of aluminum oxide (Al2O3), titanium oxide (TiO2) and zirconium oxide (ZrO2) in different concentrations of 0.25, 0.5, 0.75, 1.0, and 1.25 g/L to the cold fluid (water) turbulently flowing with different flow rates of 75, 100, 125, 150, and 175 L/min in tube side countercurrently to hot water flowing with a constant flow rate of 60 L/min in the shell side of shell and tube heat exchanger on the heat transfer rates and overall heat transfer coefficients are experimentally studied. It is found that the addition of nanomaterials gives rise to outlet cold (nano) fluids temperatures causing to enhancement averagely 7.74, 11.25, and 17.38 percent for ZrO2, TiO2, and Al2O3 respectively in heat transfer rate and averagely 12.72, 19.47, and 28.71 percent for ZrO2, TiO2, and Al2O3 respectively in overall heat transfer coefficients. The maximum enhancement values in heat transfer rates and in overall heat transfer coefficients are attained at a flow rate of 150 L/min of cold fluid.


2013 ◽  
Vol 34 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Jozef Cernecky ◽  
Jan Koniar ◽  
Zuzana Brodnianska

Abstract The paper deals with a study of the effect of regulating elements on local values of heat transfer coefficients along shaped heat exchange surfaces with forced air convection. The use of combined methods of heat transfer intensification, i.e. a combination of regulating elements with appropriately shaped heat exchange areas seems to be highly effective. The study focused on the analysis of local values of heat transfer coefficients in indicated cuts, in distances expressed as a ratio x/s for 0; 0.33; 0.66 and 1. As can be seen from our findings, in given conditions the regulating elements can increase the values of local heat transfer coefficients along shaped heat exchange surfaces. An optical method of holographic interferometry was used for the experimental research into temperature fields in the vicinity of heat exchange surfaces. The obtained values correspond very well with those of local heat transfer coefficients αx, recorded in a CFD simulation.


Author(s):  
Aleksandr S. MYAKOCHIN ◽  
Petr V. NIKITIN ◽  
Sergey Yu. POBEREZHSKIY ◽  
Anna A. SHKURATENKO

The paper presents a method, tools and a newly developed algorithm for experimentally determining heat transfer coefficients in organic liquids and solutions. This work is made relevant by the problem of development of a new generation of aerospace technology. In this connection, improvements have been made to the pulse method of determining heat transfer coefficients that is based on the use of a micron-thick film sensor. The measurement setup was modified. A math model was constructed for the measuring sensor. Algorithms were developed for conducting the experiment and processing measurement results to determine heat transfer coefficients. Experimental uncertainties were analyzed. The paper provides results of experimental studies on certain organic liquids. The authors believe that the material presented in the paper will find application in research conducted at research institutions, engineering offices and universities, among researches, postgraduates and students. Key words: thermal and physical characteristics, organic liquids and their solutions, film-type electrical resistor, thin-film temperature sensor, voltage pulse, resistance thermometer, irregular heat transfer regime.


Author(s):  
Andrei A. Akhremenkov ◽  
Anatoliy M. Tsirlin ◽  
Vladimir Kazakov

In this paper we consider heat exchange system from point of view of Finite-time thermodynamics. At first time the novel estimate of the minimal entropy production in a general-type heat exchange system with given heat load and fixed heat exchange surface is derived. The corresponding optimal distribution of heat exchange surface and optimal contact temperatures are also obtained. It is proven that if a heat flow is proportional to the difference of contacting flows’ temperatures then dissipation in a multi-flow heat exchanger is minimal only if the ratio of contact temperatures of any two flows at any point inside heat exchanger is the same and the temperatures of all heating flows leaving exchanger are also the same. Our result based on those assumptions: 1. heat transfer law is linear (17); 2. summary exchange surface is given; 3. heat load is given; 4. input tempretures for all flows are given; 5. water equivalents for all flows are given.


2015 ◽  
Vol 19 (5) ◽  
pp. 1769-1789 ◽  
Author(s):  
Volodymyr Rifert ◽  
Volodymyr Sereda

Survey of the works on condensation inside smooth horizontal tubes published from 1955 to 2013 has been performed. Theoretical and experimental investigations, as well as more than 25 methods and correlations for heat transfer prediction are considered. It is shown that accuracy of this prediction depends on the accuracy of volumetric vapor content and pressure drop at the interphase. The necessity of new studies concerning both local heat transfer coefficients and film condensation along tube perimeter and length under annular, stratified and intermediate regimes of phase flow was substantiated. These characteristics being defined will allow determining more precisely the boundaries of the flow regimes and the methods of heat transfer prediction.


2006 ◽  
Vol 128 (10) ◽  
pp. 1050-1059 ◽  
Author(s):  
Todd M. Bandhauer ◽  
Akhil Agarwal ◽  
Srinivas Garimella

A model for predicting heat transfer during condensation of refrigerant R134a in horizontal microchannels is presented. The thermal amplification technique is used to measure condensation heat transfer coefficients accurately over small increments of refrigerant quality across the vapor-liquid dome (0<x<1). A combination of a high flow rate closed loop primary coolant and a low flow rate open loop secondary coolant ensures the accurate measurement of the small heat duties in these microchannels and the deduction of condensation heat transfer coefficients from measured UA values. Measurements were conducted for three circular microchannels (0.506<Dh<1.524mm) over the mass flux range 150<G<750kg∕m2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to interpret the results based on the applicable flow regimes. The heat transfer model is based on the approach originally developed by Traviss, D. P., Rohsenow, W. M., and Baron, A. B., 1973, “Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation For Condenser Design,” ASHRAE Trans., 79(1), pp. 157–165 and Moser, K. W., Webb, R. L., and Na, B., 1998, “A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes,” ASME, J. Heat Transfer, 120(2), pp. 410–417. The multiple-flow-regime model of Garimella, S., Agarwal, A., and Killion, J. D., 2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3), pp. 1–8 for predicting condensation pressure drops in microchannels is used to predict the pertinent interfacial shear stresses required in this heat transfer model. The resulting heat transfer model predicts 86% of the data within ±20%.


Sign in / Sign up

Export Citation Format

Share Document