scholarly journals NEUTRALIZATION OF CIRCULATING CURRENT IN THE DIRECT CYCLONE

Author(s):  
Aleksandr Aslamov ◽  
Roman Lyapustin

Parasitic currents, their occurrence and measures to eliminate the circulation current.

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1448
Author(s):  
Nam-Gyu Lim ◽  
Jae-Yeol Kim ◽  
Seongjun Lee

Battery applications, such as electric vehicles, electric propulsion ships, and energy storage systems, are developing rapidly, and battery management issues are gaining attention. In this application field, a battery system with a high capacity and high power in which numerous battery cells are connected in series and parallel is used. Therefore, research on a battery management system (BMS) to which various algorithms are applied for efficient use and safe operation of batteries is being conducted. In general, maintenance/replacement of multi-series/multiple parallel battery systems is only possible when there is no load current, or the entire system is shut down. However, if the circulating current generated by the voltage difference between the newly added battery and the existing battery pack is less than the allowable current of the system, the new battery can be connected while the system is running, which is called hot swapping. The circulating current generated during the hot-swap operation is determined by the battery’s state of charge (SOC), the parallel configuration of the battery system, temperature, aging, operating point, and differences in the load current. Therefore, since there is a limit to formulating a circulating current that changes in size according to these various conditions, this paper presents a circulating current estimation method, using an artificial neural network (ANN). The ANN model for estimating the hot-swap circulating current is designed for a 1S4P lithium battery pack system, consisting of one series and four parallel cells. The circulating current of the ANN model proposed in this paper is experimentally verified to be able to estimate the actual value within a 6% error range.


Author(s):  
Nasiru B. Kadandani ◽  
Mohamed Dahidah ◽  
Salaheddine Ethni ◽  
Musbahu Muhammad

AbstractCirculating current has been an inherent feature of modular multilevel converters (MMC), which results in second-order harmonics on the arms currents. If not properly controlled, the circulating current can affect the lifetime and reliability of a converter by increasing the current loading, loss distribution, and junction temperature of its semiconductor devices. This paper proposes controlled circulating current injection as a means of improving the lifetime and reliability of an MMC. The proposed method involves modifying the reference modulating signals of the converter arms to include the controlled differential voltage as an offset. The junction temperature of the semiconductor devices obtained from an electro-thermal simulation is processed to deduce the lifetime and reliability of the converter. The obtained results are benchmarked against a case where the control method is not incorporated. The incorporation of the proposed control method results in a 68.25% increase in the expected lifetime of the converter and a 3.06% increase on its reliability index. Experimental results of a scaled down laboratory prototype validate the effectiveness of the proposed control approach.


Author(s):  
Ezequiel Ramos Rodriguez ◽  
Ramon Leyva ◽  
Qingxiang Liu ◽  
Christopher David Townsend ◽  
Glen Ghias Farivar ◽  
...  

2012 ◽  
Vol 85 (15) ◽  
Author(s):  
Samuel Lederer ◽  
Steven A. Kivelson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document