scholarly journals Status of Marine Current Energy Conversion in China

2021 ◽  
Vol 4 (1) ◽  
pp. 11-23
Author(s):  
Hongwei Liu ◽  
AbuBakr S. Bahaj

Marine current energy conversion (MCEC) technologies are promising renewable energy systems with some full scale and semi-commercial turbines constructed and deployed in several countries around the world. In this work, we present the status of marine current energy and systems in China and policies geared to support these. Over the past ten years the Chinese government has provided a policy framework and financial supports for the development of MCEC technologies of various design philosophies which has resulted in significant technology deployment at sea. A review of these technologies – which have turbine capacities in the range 20 kW to 650 kW, mostly tested at sea – is presented in the paper. In addition, the paper also discusses Chinese plans for marine energy test sites at sea to support prototype development and testing and concludes with a view of future prospects for the marine energy technology deployment in China.

Author(s):  
AbuBakr S. Bahaj

Marine currents can carry large amounts of energy, largely driven by the tides, which are a consequence of the gravitational effects of the planetary motion of the Earth, the Moon and the Sun. Augmented flow velocities can be found where the underwater topography (bathymetry) in straits between islands and the mainland or in shallows around headlands plays a major role in enhancing the flow velocities, resulting in appreciable kinetic energy. At some of these sites where practical flows are more than 1 m s −1 , marine current energy conversion is considered to be economically viable. This study describes the salient issues related to the exploitation of marine currents for electricity production, resource assessment, the conversion technologies and the status of leading projects in the field. This study also summarizes important issues related to site development and some of the approaches currently being undertaken to inform device and array development. This study concludes that, given the highlighted commitments to establish favourable regulatory and incentive regimes as well as the aspiration for energy independence and combating climate change, the progress to multi-megawatt arrays will be much faster than that achieved for wind energy development.


2011 ◽  
Vol 71-78 ◽  
pp. 2452-2457
Author(s):  
Yu Jiong Gu ◽  
Jing Hua Huang ◽  
Li Jun Zhao ◽  
Bing Bing Wang

Oceanic wave power has drawn wide attention in the field of oceanic energy utilization around the world due to its giant reserves and clean renewable energy. The utilization technologies of wave power have tended to be mature, and are running into or near commercial exploitation level. This paper fully summarizes the basic principle of wave power utilization technologies, especially its multiple energy conversion system. The status of oceanic wave energy conversion technologies and main oceanic wave generating devices around the world are presented. Furthermore, the research and application progress of oceanic wave power generating technologies are illustrated in detail. After all, from the trends and broad prospects, the utilization of wave power is of great importance for the exploitation of oceanic resources in the littorals. It is also vital for the development of islands far away from continents, as well as essential for the combination wave energy and other marine energy resources.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Karin Thomas ◽  
Mårten Grabbe ◽  
Katarina Yuen ◽  
Mats Leijon

This paper presents experiments and measurements on a low speed permanent magnet cable wound generator for marine current energy conversion. Measurements were made for no load and nominal load (4.44 Ω/phase) conditions at nominal speed (10 rpm). For either load condition, the magnetic fields in the air gap were also measured. The measurements on the generator were compared with the corresponding finite element method simulations used to design the machine. It is shown in the paper that measurements and corresponding case simulations show good agreement. At nominal speed, the measured and simulated load voltages (nominal load) differ less than 1% for the rms values and less than 5% for peak values. At no load, measured and simulated voltages had larger differences, that is, <9% for rms values and <5% for peak values. Harmonic analyses of measured and simulated phase voltages and currents show only the presence of third harmonics. The percentage of harmonics in the measured data was comparable with the corresponding predictions of the simulations. The discussions and results presented in the paper could be beneficial for future design of efficient and reliable marine current energy converter systems.


Sign in / Sign up

Export Citation Format

Share Document