scholarly journals A Continuous Topography Approach for Agent Based Traffic Simulation, Lane Changing Model

2014 ◽  
Vol 2 (1) ◽  
pp. 35
Author(s):  
Ade Jamal

Traffic simulation has been being an interesting research subject for transport engineer and scientist, mathematicians and informatics scientist for different point of view. Transport scientists study the traffic complexity and behaviour of traffic participants by using statistical experiment or simulation. The earlier approach was based on macroscopic model deducted from hydrodynamics kinematic wave analogy. Later on the microscopic model was introduced first by invoking cellular automata and then agent based model takes important role in the traffic simulation world. Most of microscopic model are based on a multi-grid element topography model which is a natural environment of cellular automata. Just recently a software engineer started an ambitious work to develop a multipurpose framework for complex traffic simulation. The ingenious idea is to replace the traditional grid based element topography with a continuous two dimensional one from which a region of traffic road or street is built up. Traffic participant is modelled as agent whose physical properties such as its coordinate position, speed, and direction are governed by the kinematic Newtonian law. This article will present this new concept and show how the simple movement of lane changing model that is very well known from the beginning era of traffic simulation become a quite complex movement in the new continuous topography

2015 ◽  
pp. 1540-1566
Author(s):  
Sara Moridpour

Heavy vehicles have substantial impact on traffic flow particularly during heavy traffic conditions. Large amount of heavy vehicle lane changing manoeuvres may increase the number of traffic accidents and therefore reduce the freeway safety. Improving road capacity and enhancing traffic safety on freeways has been the motivation to establish heavy vehicle lane restriction strategies to reduce the interaction between heavy vehicles and passenger cars. In previous studies, different heavy vehicle lane restriction strategies have been evaluated using microscopic traffic simulation packages. Microscopic traffic simulation packages generally use a common model to estimate the lane changing of heavy vehicles and passenger cars. The common lane changing models ignore the differences exist in the lane changing behaviour of heavy vehicle and passenger car drivers. An exclusive fuzzy lane changing model for heavy vehicles is developed and presented in this chapter. This fuzzy model can increase the accuracy of simulation models in estimating the macroscopic and microscopic traffic characteristics. The results of this chapter shows that using an exclusive lane changing model for heavy vehicles, results in more reliable evaluation of lane restriction strategies.


Author(s):  
Angelika C. Batosalem ◽  
Janelle Marie B. Gaba ◽  
Jan Bertel O. Ngo ◽  
Jonal Ray G. Ticug ◽  
Courtney Anne M. Ngo

2004 ◽  
Vol 19 (5) ◽  
pp. 338-350 ◽  
Author(s):  
Sigurur F. Hafstein ◽  
Roland Chrobok ◽  
Andreas Pottmeier ◽  
Michael Schreckenberg ◽  
Florian C. Mazur

2015 ◽  
Vol 72 (4) ◽  
Author(s):  
Erma Suryani ◽  
Rully Agus Hendrawan ◽  
Umi Salama ◽  
Lily Puspa Dewi

Several studies have been conducted regarding save energy in consuming the electricity through the simple changes in routines and habits. In the case of electricity consumption, consumer behavior might influenced by several factors such as consumer profession, season, and environmental awareness. In this paper, we developed an Agent Based Model (ABM) to analyze the behavior of different agents in consuming the electricity energy for each type of profession (agent) as well as their interaction with the environment. This paper demonstrates a prototype agent based simulation model to estimate the electricity consumption based on the existing condition and some scenarios to reduce the electricity consumption from consumer point of view. From the scenario results, we analyzed the impact of the save energy to increase the electrification ratio. 


Sign in / Sign up

Export Citation Format

Share Document