scholarly journals QUALITY OF DRINKING WATER IN MINING AREAS

Author(s):  
R. F Khasanova ◽  
Ya. T Suyundukov ◽  
I. N Semenova ◽  
Yu. S Rafikova

The paper presents the results of a drinking water quality study in towns located in the mining areas of the Republic of Bashkortostan, The Russian Federation. The objects of the study were underground water supply sources and water distribution networks of the towns of Uchaly, Sibay, and Baimak. In total, 30 water wells were examined, and five water samples were collected from the water distribution network in each town. The water quality indicators were pH, solid residue, total hardness, copper content, zinc content, iron content, and manganese content. The water quality in water distribution networks corresponded to the permissible limits according to environmental and sanitary regulations, except for the increased iron contentprobably due to corrosion of water supply pipelines. The water quality in non-centralized water supply (wells) in some areas failed to meet the sanitary standards. Priority indicators of water pollution were increased hardness and mineralization, high content of iron and manganese. To provide the residents with high-quality drinking water, it is proposed to make a complete inspection of centralized and non-centralized water sources not only within the towns, but also in the neighbouring communities. It is necessary to install filtration plants, primarily to reduce the iron content, in roder to bring the water taken from the wells for household and drinking purposes to the standard quality.

2020 ◽  
Vol 20 (7) ◽  
pp. 2630-2647
Author(s):  
Mohammad Solgi ◽  
Omid Bozorg-Haddad ◽  
Hugo A. Loáiciga

Abstract Intermittent operation of water distribution networks (WDNs) is an undesirable yet inevitable strategy under some circumstances such as droughts, development, electricity blackouts, and water pollution, mostly in developing countries. Intermittent utilization of WDNs poses several disadvantages encompassing water quality degradation, deterioration of the water-distribution system, and extra operational and maintenance costs due to frequently interrupted supply, unfair water distribution among consumers, and reduction of system serviceability. This paper proposes a multi-objective optimization model to address the negative consequences of intermittent water shortages. The model is intended to maximize the quantitative and qualitative reliability and the fairness in water supply, and to minimize the frequency of supply interruption. The developed model also considers pragmatic limitations, water quality, water pressure, and supply reservoir's constraints to plan the operation of intermittent water distribution systems under water shortage. The model's efficiency is tested with a WDN in Iran and compared with a standard operation policy (SOP) for water distribution. According to the evaluated efficiency criteria concerning reliability, resiliency, and vulnerability of water quality and quantity of water supply, the developed model is superior to the SOP rule and improves the performance of the network under intermittent operation. In addition, the results demonstrate there is a tradeoff between the uniformity of water distribution and the frequency of supply interruption that shows operators’ and customers’ conflicting priorities.


Sign in / Sign up

Export Citation Format

Share Document