scholarly journals Influence of suspension parameter for derailment analysis of a full railway vehicle model cruising on a curved track

Author(s):  
Yamika Patel ◽  
◽  
Vikas Rastogi ◽  
Wolfgang Borutzky ◽  
◽  
...  

The main intention of this research work is to study the derailment response of high speed railway vehicle (HSRV) cruising on a curved track. In previous research work, lower degree of freedom (DOF) has been considered for the derailment analysis which may not give more accurate results. Hence, a 31 DOF bondgraph model of HSRV has been developed which consist of carbody, two truck frames and two selfsame wheelsets for each truck frame. Vertical, lateral, roll, yaw and pitch motion are considered for carbody and bogie and except pitch motion all the other motion are considered for wheelsets. Non-linearities in terms of heuristic nonlinear creep model and flange contact has been employed to simulate the derailment response at high speed. The effect of vehicle speed running on a curved track was investigated for derailment quotient. The main aim of present research work to evaluate derailment quotient at the speed range of 150 kmph to 600 kmph for hard and soft suspension parameter. Derailment quotient has been calculated for both linear and nonlinear creep models and it is seen that DQ for linear model has a lower value compare to non linear creep. The major advantages of the proposed model are that, the presented model can actively predict the derailment of a railway vehicle, and also precisely determine the nonlinear critical hunting speeds.

2011 ◽  
Vol 110-116 ◽  
pp. 186-195 ◽  
Author(s):  
Yung Chang Cheng ◽  
Chern Hwa Chen ◽  
Che Jung Yang

Based on the heuristic nonlinear creep model, the nonlinear coupled differential equations of the motion of a 12 degree-of-freedom (12-DOF) bogie system which takes account of the lateral displacement, vertical displacement, the roll angle and the yaw angle of the each wheelset and the bogie frame, moving on curved tracks are derived. The nonlinear creep forces and moments are constructed via the saturation constant of the nonlinear creep model in completeness. The effect of the suspension parameters of a bogie system on the derailment quotient is investigated. Results obtained in this study show that the derailment quotient of a bogie system increases as the vehicle speed increases. In addition, the derailment quotient of a bogie system is generally decreased with the increasing values of suspension parameters.


2011 ◽  
Vol 199-200 ◽  
pp. 239-242
Author(s):  
Chern Hwa Chen ◽  
Yung Chang Cheng ◽  
Shun Chin Yang ◽  
Yuh Yi Lin ◽  
Cheng Hsin Chang ◽  
...  

Based on the heuristic nonlinear creep model, the nonlinear coupled differential equations of the motion of a 12 degree-of-freedom (12-DOF) bogie system which takes account of the lateral displacement, vertical displacement, the roll angle and the yaw angle of the each wheelset and the bogie frame, moving on curved tracks are derived. The nonlinear creep forces and moments are constructed via the saturation constant of the nonlinear creep model in completeness. The effect of the suspension parameters of a bogie system on the derailment quotient is investigated. Results obtained in this study show that the derailment quotient of a bogie system increases as the vehicle speed increases. In addition, the derailment quotient of a bogie system is generally decreased with the increasing values of suspension parameters.


Author(s):  
Yung-Chang Cheng ◽  
Sen-Yung Lee

A new dynamic model of railway vehicle moving on curved tracks is proposed. In this new model, the motion of the car body is considered and the motion of the tuck frame is not restricted by a virtual boundary. Based on the heuristic nonlinear creep model, the nonlinear coupled differential equations of the motion of a fourteen degrees of freedom car system, considering the lateral displacement and the yaw angle of the each wheelset, the truck frame and the car body, moving on curved tracks are derived in completeness. To illustrate the accuracy of the analysis, the limiting cases are examined. In addition, the influences of the suspension parameters on the critical hunting speeds evaluated via the linear and the nonlinear creep models respectively are studied. Furthermore, the influences of the suspension parameters on the critical hunting speeds evaluated via the fourteen degrees of freedom car system and the six degrees of freedom truck system, which the motion of the tuck frame is restricted by a virtual boundary, are compared.


Author(s):  
Yung-Chang Cheng

A non-linear creep model that considers non-constant creep coefficients that vary as a function of vehicle speed is derived using Hertz contact theory, Kalker’s linear theory and a heuristic non-linear creep model. The proposed model is created by modifying the heuristic non-linear creep model by adding a linear creep moment and the semi-axis lengths in the non-linearity of the saturation constant. In this paper, the vehicle is modeled by a system with 28 degrees of freedom, taking into consideration the lateral displacement, vertical displacement, roll angle and yaw angle of each wheelset, the truck frames and car body. To analyze the respective effects of the major system parameters on the vehicle dynamics, the 28 degree-of-freedom (DOF) system is reduced to a 25-DOF model, by excluding designated subsets of the system parameters. The accuracy of the present analysis is verified by comparing a six-DOF system and the current numerical results with results in the literature. The effects of suspension parameters of a vehicle on the critical hunting speeds evaluated by the currently proposed model, the traditional non-linear creep model and the linear creep model are illustrated. In most cases, the obtained results show that the critical hunting speed evaluated using the new non-linear creep model is greater than that derived using the traditional non-linear creep model. Additionally, the critical hunting speed evaluated using the linear creep model is higher than that evaluated using the currently proposed non-linear creep model.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xueliang Zhao ◽  
Chengjin Zhang ◽  
Hongbo Liu ◽  
Guilin Zhang ◽  
Kang Li

A modified log-type creep model without hysteresis of the stack piezoelectric actuator is presented. For high-speed micro-/nanopositioning system, the time scale should be less than one second for creep modeling and control in the stack piezoelectric actuator. But creep effect was studied in the frame of minutes in previous works. Meanwhile, parameters of the classical creep models are hard to be determined. By the proposed model, the hysteresis and the creep effect can be separated. A series of experiments have been performed, where different staircase voltages have been applied to the actuator. There are two clear rules to follow in small duration and different heights to determine parameters. Firstly,L0starts from fixed point either in ascending stage or in descending stage and rotates clockwise. Secondly,γconverges to a small vicinity of a constant when the duration is small enough.


2016 ◽  
Vol 16 (09) ◽  
pp. 1550056 ◽  
Author(s):  
Yung-Chang Cheng ◽  
Chin-Te Hsu

The ride comfort of a tilting railway vehicle moving on curved tracks with rail irregularities is studied. Using the nonlinear creep model and Kalker's linear theory, the governing differential equations of motion for a tilting railway vehicle running on irregular tracks are first derived. The tilting railway vehicle is modeled by a 27 degree-of-freedom (DOF) car system, considering the lateral displacement, vertical displacement, roll angle and yaw angle of both the wheelsets and bogie frames, as well as the lateral displacement, roll angle and yaw angle of the car body. Based on the international standard ISO 2631-1, the effect of vehicle speed on the ride comfort index of the tilting vehicle is investigated for various tilting angles, using both linear and nonlinear creep models, and various radii of curved tracks, as well as for various suspension parameters. Finally, the ride comfort indices computed with rail irregularities are found to be higher than those with no rail irregularities, indicating that the effect of rail irregularities on the ride comfort of a tilting vehicle cannot be disregarded in practice.


Author(s):  
Y-C Cheng ◽  
C-T Hsu

Using a heuristic linear creep model, this article derives the governing differential equations of motion for a vehicle travelling on curved tracks. The vehicle is modelled by a 27-degrees-of-freedom (27-DOF) car system, with lateral and vertical displacement, roll and yaw angle of each wheelset and the bogie frames, as well as lateral displacement, and roll and yaw angle of the car body taken into consideration. To analyse the respective effects of major system parameters on vehicle dynamics, the 27-DOF system is reduced to a 14-DOF system by excluding designated subsets of the system parameters. The effects of suspension parameters of a vehicle on the critical hunting speeds were evaluated by the 14- and 27-DOF systems. The results obtained in this study, show that the critical hunting speeds derived using the 14-DOF system are generally higher than those obtained using the 27-DOF system. Additionally, the critical hunting speeds derived using the heuristic non-linear creep model are lower than those achieved using the linear creep model. The effects on derailment quotients of vehicle speeds are evaluated using both linear and non-linear creep models with various suspension parameters. Finally, the effects of vehicle speed on the derailment quotient for sharp curves and low vehicle speed are investigated and compared with both linear and non-linear creep models.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jianfeng Sun ◽  
Maoru Chi ◽  
Wubin Cai ◽  
Xuesong Jin

The critical speed and hunting frequency are two basic research objects of vehicle system dynamics and have a significant influence on the dynamic performance. A lateral dynamic model with 17 degrees of freedom was established in this study to investigate the critical speed and hunting frequency of a high-speed railway vehicle. The nonlinearities of wheel/rail contact geometry, creep forces, and yaw damper were all considered. A heuristic nonlinear creep model was employed to estimate the contact force between the wheel and the rail. The Maxwell model, which covers the influence of the stiffness characteristic, is used to simulate the yaw damper. To reflect the blow-off of the yaw damper, the damping coefficient is described by stages. Based on the mathematical model, the combined effects of vehicle parameters on the critical speed in the straight line and hunting frequency of the wheelset were investigated innovatively. The novel phenomenon that the hunting frequency exhibits a sudden increase from a smaller value to a larger value when the blow-off of the yaw damper occurs was discovered during the calculations. The extents to which various parameters affect the critical speed and hunting frequency are clear on the basis of the numerical results. Moreover, all of the parameter values were divided into three sections to determine the sensitive range for the critical speed and hunting frequency. The results show that the first section of values plays the decisive role on both the critical speed and the hunting frequency for all parameters analyzed. The investigation in this paper enriches the study of hunting stability and gives some ideas to probably solve the abnormal vibrations during the actual operation.


2004 ◽  
Vol 127 (4) ◽  
pp. 324-332 ◽  
Author(s):  
Sen-Yung Lee ◽  
Yung-Chang Cheng

Based on the heuristic nonlinear creep model, the nonlinear coupled differential equations of the motion of a ten-degree-of-freedom truck system, considering the lateral displacement, the vertical displacement, the roll and yaw angles of the each wheelset, and the lateral displacement and yaw angle of the truck frame, moving on curved tracks, are derived in completeness. To illustrate the accuracy of the analysis, the limiting cases are examined. The influences of the suspension parameters, including those losing in the six-degree-of-freedom system, on the critical hunting speeds evaluated via the linear and nonlinear creep models, respectively, are studied and compared.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Sen-Yung Lee ◽  
Yung-Chang Cheng

A new dynamic model of railway vehicle moving on curved tracks is proposed. In the new model, the motion of the car body is considered and the motion of the truck frame is not restricted by a virtual boundary. Based on the heuristic nonlinear creep model, the nonlinear coupled differential equations of the motion of an eight degrees of freedom car system—considering the lateral displacement and the yaw angle of each wheelset, the truck frame, and the half car body—moving on curved tracks are derived completely. To illustrate the accuracy of the analysis, the limiting cases are examined. It is shown that the influence of the gyroscopic moment of the wheelsets on the critical hunting speed is negligible. In addition, the influences of the suspension parameters, including those losing in the six degrees of freedom system, on the critical hunting speeds evaluated via the linear and the nonlinear creep models are studied and compared.


Sign in / Sign up

Export Citation Format

Share Document