scholarly journals Optimization problems and (0, 2)-η-approximated optimization problems

2012 ◽  
Vol 28 (1) ◽  
pp. 37-46
Author(s):  
LIANA CIOBAN ◽  
◽  
DOREL I. DUCA ◽  

In this paper, we attach to the optimization problem ... where X is a subset of Rn, f : X → R, g : X → Rm and h : X → Rq are three functions, m, n, q ∈ N, a (0, 2)-η-approximated optimization problem (AP). We will study the connections between the feasible solutions of the η-approximated problem and the feasible solutions of the original problem. Then we will study the connections between the optimal solutions of Problem (AP) and the optimal solutions of Problem (P) via the saddle points of the two problems.

2012 ◽  
Vol 28 (1) ◽  
pp. 133-141
Author(s):  
EMILIA-LOREDANA POP ◽  
◽  
DOREL I. DUCA ◽  

In this paper, we attach to the optimization problem ... where X is a subset of Rn, f : X → R, g = (g1, ..., gm) : X → Rm and h = (h1, ..., hq) : X → Rq are functions, the (0, 1) − η− approximated optimization problem (AP). We will study the connections between the optimal solutions for Problem (AP), the saddle points for Problem (AP), optimal solutions for Problem (P) and saddle points for Problem (P).


2012 ◽  
Vol 28 (1) ◽  
pp. 17-24
Author(s):  
HORATIU VASILE BONCEA ◽  
◽  
DOREL I. DUCA ◽  

Let X be a nonempty subset of Rn, x 0 be an interior point of X, f : X → R be a differentiable function at x 0 , g : X → Rm be a twice differentiable function at x 0 and η : X × X → Rn be a function. In this paper, we attach to the optimization problem ... the (1, 2)-η- approximated optimization problem ... and we will study the relations between the optimal solutions of Problem (P), the optimal solutions of Problem (AP), the saddle points of Problem (P) and saddle points of Problem (AP).


2021 ◽  
Vol 12 (4) ◽  
pp. 81-100
Author(s):  
Yao Peng ◽  
Zepeng Shen ◽  
Shiqi Wang

Multimodal optimization problem exists in multiple global and many local optimal solutions. The difficulty of solving these problems is finding as many local optimal peaks as possible on the premise of ensuring global optimal precision. This article presents adaptive grouping brainstorm optimization (AGBSO) for solving these problems. In this article, adaptive grouping strategy is proposed for achieving adaptive grouping without providing any prior knowledge by users. For enhancing the diversity and accuracy of the optimal algorithm, elite reservation strategy is proposed to put central particles into an elite pool, and peak detection strategy is proposed to delete particles far from optimal peaks in the elite pool. Finally, this article uses testing functions with different dimensions to compare the convergence, accuracy, and diversity of AGBSO with BSO. Experiments verify that AGBSO has great localization ability for local optimal solutions while ensuring the accuracy of the global optimal solutions.


2011 ◽  
Vol 421 ◽  
pp. 559-563
Author(s):  
Yong Chao Gao ◽  
Li Mei Liu ◽  
Heng Qian ◽  
Ding Wang

The scale and complexity of search space are important factors deciding the solving difficulty of an optimization problem. The information of solution space may lead searching to optimal solutions. Based on this, an algorithm for combinatorial optimization is proposed. This algorithm makes use of the good solutions found by intelligent algorithms, contracts the search space and partitions it into one or several optimal regions by backbones of combinatorial optimization solutions. And optimization of small-scale problems is carried out in optimal regions. Statistical analysis is not necessary before or through the solving process in this algorithm, and solution information is used to estimate the landscape of search space, which enhances the speed of solving and solution quality. The algorithm breaks a new path for solving combinatorial optimization problems, and the results of experiments also testify its efficiency.


2016 ◽  
Vol 0 (0) ◽  
pp. 5-11
Author(s):  
Andrzej Ameljańczyk

The paper presents a method of algorithms acceleration for determining Pareto-optimal solutions (Pareto Front) multi-criteria optimization tasks, consisting of pre-ordering (presorting) set of feasible solutions. It is proposed to use the generalized Minkowski distance function as a presorting tool that allows build a very simple and fast algorithm Pareto Front for the task with a finite set of feasible solutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Zhi-Ang Zhou

We studyϵ-Henig saddle points and duality of set-valued optimization problems in the setting of real linear spaces. Firstly, an equivalent characterization ofϵ-Henig saddle point of the Lagrangian set-valued map is obtained. Secondly, under the assumption of the generalized cone subconvexlikeness of set-valued maps, the relationship between theϵ-Henig saddle point of the Lagrangian set-valued map and theϵ-Henig properly efficient element of the set-valued optimization problem is presented. Finally, some duality theorems are given.


2016 ◽  
Vol 685 ◽  
pp. 142-147
Author(s):  
Vladimir Gorbunov ◽  
Elena Sinyukova

In this paper the authors describe necessary conditions of optimality for continuous multicriteria optimization problems. It is proved that the existence of effective solutions requires that the gradients of individual criteria were linearly dependent. The set of solutions is given by system of equations. It is shown that for finding necessary and sufficient conditions for multicriteria optimization problems, it is necessary to switch to the single-criterion optimization problem with the objective function, which is the convolution of individual criteria. These results are consistent with non-linear optimization problems with equality constraints. An example can be the study of optimal solutions obtained by the method of the main criterion for Pareto optimality.


2018 ◽  
Vol 34 (1) ◽  
pp. 01-07
Author(s):  
TADEUSZ ANTCZAK ◽  

In this paper, a new approximation method for a characterization of optimal solutions in a class of nonconvex differentiable optimization problems is introduced. In this method, an auxiliary optimization problem is constructed for the considered nonconvex extremum problem. The equivalence between optimal solutions in the considered differentiable extremum problem and its approximated optimization problem is established under (Φ, ρ)-invexity hypotheses.


Author(s):  
N.V. Semenova ◽  
◽  
M.M. Lomaha ◽  
V.V. Semenov ◽  
◽  
...  

Among vector problems, the lexicographic ones constitute a broad significant class of problems of optimization. Lexicographic ordering is applied to establish rules of subordination and priority. Hence, a lot of problems including the ones of complex system optimization, of stochastic programming under a risk, of the dynamic character, etc. may be presented in the form of lexicographic problems of optimization. We have revealed the conditions of existence of solutions of multicriteria of lexicographic optimization problems with an unbounded set of feasible solutions on the basis of applying the properties of a recession cone of a con vex feasible set, the cone which puts it in order lexicographically with respect to optimization criteria. The obtained conditions may be successfully used while developing algorithms for finding the optimal solutions of the mentioned problems of lexicographic optimization. A method of finding the optimal solutions of convex lexico graphic problems with the linear functions of criteria is built and grounded on the basis of ideas of the method of linearization and the Kelley cutting plane method.


2010 ◽  
Vol 439-440 ◽  
pp. 505-509 ◽  
Author(s):  
Ya Bo Luo ◽  
Ming Chun Tang

The schedule for job shop system involving the complex correlated constraints is a complex combinatorial optimization problem, for which currently there is no a methodology claiming to have capability to find the optimum solution. Current research concentrate on the search of acceptable feasible solutions. This research proposes an embedded multi-phase methodology to find the acceptable feasible solutions in a higher efficiency. The thinking of the methodology is to decompose the complex optimization problem into two sub problems of the operation sequence and the machine allocation to lower the complexity of the scheduling system and improve the searching efficiency. The two sub problems are solved orderly respectively, and the results of the first sub problem are embedded into the second sub problem as the original values of design variables. Thus these two sub optimization problems are integrated into a searching loop to ensure the feasibility of solution and improve the searching efficiency in the complex correlated system.


Sign in / Sign up

Export Citation Format

Share Document