scholarly journals Existence of a unique positive solution for a singular fractional boundary value problem

2018 ◽  
Vol 34 (1) ◽  
pp. 57-64
Author(s):  
E. T. KARIMOV ◽  
◽  
K. SADARANGANI ◽  

In the present work, we discuss the existence of a unique positive solution of a boundary value problem for a nonlinear fractional order equation with singularity. Precisely, order of equation Dα 0+u(t) = f(t, u(t)) belongs to (3, 4] and f has a singularity at t = 0 and as a boundary conditions we use... Using a fixed point theorem, we prove the existence of unique positive solution of the considered problem.

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Hongjie Liu ◽  
Xiao Fu ◽  
Liangping Qi

We are concerned with the following nonlinear three-point fractional boundary value problem:D0+αut+λatft,ut=0,0<t<1,u0=0, andu1=βuη, where1<α≤2,0<β<1,0<η<1,D0+αis the standard Riemann-Liouville fractional derivative,at>0is continuous for0≤t≤1, andf≥0is continuous on0,1×0,∞. By using Krasnoesel'skii's fixed-point theorem and the corresponding Green function, we obtain some results for the existence of positive solutions. At the end of this paper, we give an example to illustrate our main results.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imed Bachar ◽  
Said Mesloub

We consider singular nonlinear Hadamard fractional boundary value problems. Using properties of Green’s function and a fixed point theorem, we show that the problem has positive solutions which blow up. Finally, some examples are provided to explain the applications of the results.


2015 ◽  
Vol 20 (2) ◽  
pp. 188-204 ◽  
Author(s):  
Ilkay Yaslan Karaca ◽  
Fatma Tokmak Fen

In this paper, by using double fixed point theorem and a new fixed point theorem, some sufficient conditions for the existence of at least two and at least three positive solutions of an nth-order boundary value problem with integral boundary conditions are established, respectively. We also give two examples to illustrate our main results.


2004 ◽  
Vol 45 (3) ◽  
pp. 327-332 ◽  
Author(s):  
Pedro J. Torres

AbstractIt is proved that the Neumann boundary value problem, which Mays and Norbury have recently connected with a certain fluid dynamics equation, has a positive solution for any positive value of a particular parameter. Uniform bounds for the solutions and symmetry on a given range of the parameter are also introduced. The proofs include Krasnoselskii's classical fixed-point theorem on cones of a Banach space and basic comparison techniques.


Author(s):  
Hedia Benaouda

Abstract In this paper we investigate the existence three positives solutions by using Leggett-Williams fixed point theorem in cones for three boundary value problem with fractional order and infinite delay.


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 129 ◽  
Author(s):  
Thenmozhi Shanmugam ◽  
Marudai Muthiah ◽  
Stojan Radenović

In this work, we investigate the existence of solutions for the particular type of the eighth-order boundary value problem. We prove our results using classical version of Leray–Schauder nonlinear alternative fixed point theorem. Also we produce a few examples to illustrate our results.


2011 ◽  
Vol 50-51 ◽  
pp. 704-708
Author(s):  
Xian Rui Meng ◽  
Na Na Li ◽  
Yu Xia Tong

Multi-point boundary value problem is studied in this paper. With the condition that nonlinear term is superlinear or sublinear, it is proved that there exists at least one positive solution to multi-point Sturm-Liouville boundary value problem by using the fixed-point theorem concerning cone expansion and compression of norm type.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yanbin Sang

We consider a high-order three-point boundary value problem. Firstly, some new existence results of at least one positive solution for a noneigenvalue problem and an eigenvalue problem are established. Our approach is based on the application of three different fixed point theorems, which have extended and improved the famous Guo-Krasnosel’skii fixed point theorem at different aspects. Secondly, some examples are included to illustrate our results.


Author(s):  
Keyu Zhang ◽  
Jiafa Xu

AbstractIn this work we consider the unique positive solution for the following fractional boundary value problem $\left\{ \begin{gathered} D_{0 + }^\alpha u(t) = - f(t,u(t)),t \in [0,1], \hfill \\ u(0) = u'(0) = u'(1) = 0. \hfill \\ \end{gathered} \right. $ Here α ∈ (2, 3] is a real number, D 0+α is the standard Riemann-Liouville fractional derivative of order α. By using the method of upper and lower solutions and monotone iterative technique, we also obtain that there exists a sequence of iterations uniformly converges to the unique solution.


Sign in / Sign up

Export Citation Format

Share Document