Coefficient bounds for M-fold symmetric analytic bi-Bazilevič functions using by Faber polynomial expansion

2020 ◽  
Vol 29 (1) ◽  
pp. 81-89
Author(s):  
F. MUGE SAKAR ◽  
H. OZLEM GUNEY

A function is said to be bi-univalent in the open unit disc D, if both the function f and its inverse are univalent in the unit disc. Besides, a function is said to be bi-Bazilevic in ˘ D, if both the function f and its inverse are Bazilevic there. The behaviour of these types of functions are unpredictable ˘ and not much is known about their coefficients. In this study, we determined coefficient estimates for the Taylor Maclaurin coefficients of the class on m-fold symmetric bi-Bazilevic functions. We also, use the Faber Polynomial expansions to obtain these coefficient estimates associated with ˘ upper bounds.

2019 ◽  
Vol 16 (1(Suppl.)) ◽  
pp. 0248
Author(s):  
Juma Et al.

In this work,  an explicit formula for a class of Bi-Bazilevic univalent functions involving differential operator is given, as well as the determination of upper bounds for the general Taylor-Maclaurin coefficient of a functions belong to this class, are established Faber polynomials are used as a coordinated system to study the geometry of the manifold of coefficients for these functions. Also determining bounds for the first two coefficients of such functions.          In certain cases, our initial estimates improve some of the coefficient bounds and link them to earlier thoughtful results that are published earlier.  


2019 ◽  
Vol 16 (1) ◽  
pp. 0248
Author(s):  
Juma Et al.

In this work,  an explicit formula for a class of Bi-Bazilevic univalent functions involving differential operator is given, as well as the determination of upper bounds for the general Taylor-Maclaurin coefficient of a functions belong to this class, are established Faber polynomials are used as a coordinated system to study the geometry of the manifold of coefficients for these functions. Also determining bounds for the first two coefficients of such functions.          In certain cases, our initial estimates improve some of the coefficient bounds and link them to earlier thoughtful results that are published earlier.  


2018 ◽  
Vol 68 (2) ◽  
pp. 369-378 ◽  
Author(s):  
Ahmad Zireh ◽  
Ebrahim Analouei Adegani ◽  
Mahmood Bidkham

Abstract In this paper, we use the Faber polynomial expansion to find upper bounds for |an| (n ≥ 3) coefficients of functions belong to classes $\begin{array}{} H_{q}^{\Sigma}(\lambda,h),\, ST_{q}^{\Sigma}(\alpha,h)\,\text{ and} \,\,M_{q}^{\Sigma}(\alpha,h) \end{array}$ which are defined by quasi-subordinations in the open unit disk 𝕌. Further, we generalize some of the previously published results.


2021 ◽  
Vol 7 (2) ◽  
pp. 2989-3005
Author(s):  
Sheza. M. El-Deeb ◽  
◽  
Gangadharan Murugusundaramoorthy ◽  
Kaliyappan Vijaya ◽  
Alhanouf Alburaikan ◽  
...  

<abstract><p>In this paper, we introduce a new class of bi-univalent functions defined in the open unit disc and connected with a $ q $-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions, and we obtain an estimation for Fekete-Szegö problem for this class.</p></abstract>


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Hari Mohan Srivastava ◽  
Ahmad Motamednezhad ◽  
Safa Salehian

In this paper, we introduce a new comprehensive subclass ΣB(λ,μ,β) of meromorphic bi-univalent functions in the open unit disk U. We also find the upper bounds for the initial Taylor-Maclaurin coefficients |b0|, |b1| and |b2| for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients |bn|(n≧1) for functions in the subclass ΣB(λ,μ,β) by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Akhter Rasheed ◽  
Saqib Hussain ◽  
Muhammad Asad Zaighum ◽  
Maslina Darus

In this paper, we introduce a new subclass of analytic functions in open unit disc. We obtain coefficient estimates, extreme points, and distortion theorem. We also derived the radii of close-to-convexity and starlikeness for this class.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 172 ◽  
Author(s):  
Hari M. Srivastava ◽  
Ahmad Motamednezhad ◽  
Ebrahim Analouei Adegani

In this article, we introduce a general family of analytic and bi-univalent functions in the open unit disk, which is defined by applying the principle of differential subordination between analytic functions and the Tremblay fractional derivative operator. The upper bounds for the general coefficients | a n | of functions in this subclass are found by using the Faber polynomial expansion. We have thereby generalized and improved some of the previously published results.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Eman S. A. AbuJarad ◽  
Mohammed H. A. AbuJarad ◽  
Thabet Abdeljawad ◽  
Fahd Jarad

In this paper, the authors introduced certain subclasses β-uniformly q-starlike and β-uniformly q-convex functions of order α involving the q-derivative operator defined in the open unit disc. Coefficient bounds were also investigated.


Filomat ◽  
2015 ◽  
Vol 29 (8) ◽  
pp. 1839-1845 ◽  
Author(s):  
H.M. Srivastava ◽  
Sevtap Eker ◽  
Rosihan Alic

In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions in the open unit disk U. By using the Faber polynomial expansions, we obtain upper bounds for the coefficients of functions belonging to this analytic and bi-univalent function class. Some interesting recent developments involving other subclasses of analytic and bi-univalent functions are also briefly mentioned.


Author(s):  
S. Abelman ◽  
K. A. Selvakumaran ◽  
M. M. Rashidi ◽  
S. D. Purohit

In this article, we introduce and investigate a new class of non-Bazilevič functions with respect to k-symmetric points defined by using fractional q-calculus operators and q-differentiation. Several interesting subordination results are derived for the functions belonging to this class in the open unit disc. Furthermore, we point out some new and known consequences of our main result.


Sign in / Sign up

Export Citation Format

Share Document