Сalculation of parameters of forced steady - state fluctuations of the pipeline

Author(s):  
А.Л. Мелконян ◽  
Д.А. Николаев ◽  
М.В. Чуклин

Для расчета параметров вибрации трубопроводов (амплитуды смещений, внутренних усилий и опорных реакций) разработаны модель, алгоритм и программа. Модель – квазиодномерная конечноэлементная система. Алгоритм расчета построен на базе метода парциальных откликов в его дискретном варианте. Выведены формулы для парциальных откликов и парциальных параметров, необходимые при реализации предложенного алгоритма. Влияние протекающей жидкости учтено приложением дополнительной инерционной нагрузки, которая, в свою очередь, учитывается коррекцией и модификацией инерционно-жесткостных характеристик модели трубопровода. В качестве примера рассмотрена задача о вибрации прямого трубопровода постоянного поперечного сечения, опирающегося на две опоры. Выполнено исследование влияния составляющих инерционной нагрузки на параметры вибрации, значения собственных частот и величину критической скорости жидкости. Оценена сходимость процесса в случае необходимости применения метода последовательных приближений. To analyze vibration parameters of the pipeline (displacement amplitudes, internal forces, and support reactions) the model, algorithm, and program were created. The model is a quasi-one-dimensional (quasi-1D) finite element system. The calculation algorithm is based on the discrete version of the partial responses method. Formulas for partial responses and partial parameters necessary for the implementation of the proposed algorithm were derived. The influence of the flowing liquid is compensated by applying an additional inertial load, which, in turn, is taken into account by correcting and modifying the inertia-stiffness characteristics of the pipeline model. The problem of the vibration of a straight pipeline of a constant cross-section with two points of support is given as an example. The influence of inertial load components on vibration parameters, own frequency values, and the critical velocity of the liquid were studied. The convergence of the process in case of using method of successive approximations was estimated.

2020 ◽  
Vol S-I (2) ◽  
pp. 260-265
Author(s):  
A. Melkonyan ◽  
◽  
M. Chuklin ◽  

This paper discusses the development of calculation complex (model, algorithm and software) needed to investigate vibration parameters (amplitudes of displacements, internal forces and support responses) of a constant cross-section pipeline with a perfect incompressible fluid flowing inside it. This paper presents a pipeline model as quasi-monomeric finite-element system. Presently, the study discusses vibration of a straight constant cross-section pipeline resting on two elastic supports. Calculation algorithm is based on the discrete variant of partial-response method. The effect of fluid flow is taken into account as an additional inertial load incorporated, in its turn, by means of corrections and modifications of inertia & stiffness parameters of pipeline model. The study gives calculation expressions for partial responses and partial parameters, needed to implement the algorithm suggested by the authors. The problem formulated in this paper was solved as per specially developed mathematical model taking into account the forces due to the flow in the pipe. The paper also suggests calculation algorithm for vibration parameters of the adopted model. These vibration parameters were obtained in specially developed Koriolis software. The study also investigated the effect of additional inertial load components upon vibration parameters and natural frequencies of the structure at question. All these activities made it possible to accomplish the task of the whole study, i.e. to develop the calculation complex for determination of pipeline vibration parameters.


2017 ◽  
Vol 865 ◽  
pp. 325-330 ◽  
Author(s):  
Vladimir I. Andreev ◽  
Lyudmila S. Polyakova

The paper proposes the numerical method of solution the problems of calculation the stress state in thick-walled cylinders and spheres from physically nonlinear inhomogeneous material. The urgency of solved problem due to the change of mechanical properties of materials under the influence of different physical fields (temperature, humidity, radiation, etc.). The deformation diagram describes the three-parameter formula. The numerical method used the method of successive approximations. The results of numerical calculation are compared with the test analytical solutions obtaining the authors with some restrictions on diagram parameters. The obtained results can be considered quite satisfactory.


1988 ◽  
Vol 66 (7) ◽  
pp. 576-579
Author(s):  
G. T. Karahalios ◽  
C. Sfetsos

A sphere executes small-amplitude linear and torsional oscillations in a fluid at rest. The equations of motion of the fluid are solved by the method of successive approximations. Outside the boundary layer, a steady secondary flow is induced in addition to the time-varying motion.


2015 ◽  
Vol 20 (4) ◽  
pp. 939-951
Author(s):  
K.K. Żur

Abstract Free vibration analysis of homogeneous and isotropic annular thin plates by using Green’s functions is considered. The formula of the influence function for uniform thin circular and annular plates is presented in closed-form. The limited independent solutions of differential Euler equation were expanded in the Neumann power series based on properties of integral equations. The analytical frequency equations as power series were obtained using the method of successive approximations. The natural axisymmetric frequencies for singularities when the core radius approaches zero are calculated. The results are compared with selected results presented in the literature.


2020 ◽  
Vol 5 (2) ◽  
pp. 168-172
Author(s):  
K. Ismayilov ◽  
◽  
S.T. Suleymanov ◽  
S.T. Ruziev ◽  
M.B. Aripjanova ◽  
...  

2009 ◽  
Vol 40 (1) ◽  
pp. 19-29 ◽  
Author(s):  
P. Prakash ◽  
V. Kalaiselvi

In this paper, we study the existence and uniqueness of solutions for a class of fuzzy Volterra integral equations with infinite delay by using the method of successive approximations.


Sign in / Sign up

Export Citation Format

Share Document