scholarly journals Paths of Length Three are $K_{r+1}$-Turán-Good

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Kyle Murphy ◽  
JD Nir

The generalized Turán problem ex$(n,T,F)$ is to determine the maximal number of copies of a graph $T$ that can exist in an $F$-free graph on $n$ vertices. Recently, Gerbner and Palmer noted that the solution to the generalized Turán problem is often the original Turán graph. They gave the name "$F$-Turán-good" to graphs $T$ for which, for large enough $n$, the solution to the generalized Turán problem is realized by a Turán graph. They prove that the path graph on two edges, $P_2$, is $K_{r+1}$-Turán-good for all $r \ge 3$, but they conjecture that the same result should hold for all $P_\ell$. In this paper, using arguments based in flag algebras, we prove that the path on three edges, $P_3$, is also $K_{r+1}$-Turán-good for all $r \ge 3$.

10.37236/2471 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Craig Timmons

Let $F$ be a graph.  A graph $G$ is $F$-free if it does not contain $F$ as a subgraph.  The Turán number of $F$, written $\textrm{ex}(n,F)$, is the maximum number of edges in an $F$-free graph with $n$ vertices.  The determination of Turán numbers of bipartite graphs is a challenging and widely investigated problem.  In this paper we introduce an ordered version of the Turán problem for bipartite graphs.  Let $G$ be a graph with $V(G) = \{1, 2, \dots , n \}$ and view the vertices of $G$ as being ordered in the natural way.  A zig-zag $K_{s,t}$, denoted $Z_{s,t}$, is a complete bipartite graph $K_{s,t}$ whose parts $A = \{n_1 < n_2 < \dots < n_s \}$ and $B = \{m_1 < m_2 < \dots < m_t \}$ satisfy the condition $n_s < m_1$.  A zig-zag $C_{2k}$ is an even cycle $C_{2k}$ whose vertices in one part precede all of those in the other part.  Write $\mathcal{Z}_{2k}$ for the family of zig-zag $2k$-cycles.  We investigate the Turán numbers $\textrm{ex}(n,Z_{s,t})$ and $\textrm{ex}(n,\mathcal{Z}_{2k})$.  In particular we show $\textrm{ex}(n, Z_{2,2}) \leq \frac{2}{3}n^{3/2} + O(n^{5/4})$.  For infinitely many $n$ we construct a $Z_{2,2}$-free $n$-vertex graph with more than $(n - \sqrt{n} - 1) + \textrm{ex} (n,K_{2,2})$ edges.


10.37236/1966 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Oleg Pikhurko ◽  
Anusch Taraz

Let $F$ be a fixed graph of chromatic number $r+1$. We prove that for all large $n$ the degree sequence of any $F$-free graph of order $n$ is, in a sense, close to being dominated by the degree sequence of some $r$-partite graph. We present two different proofs: one goes via the Regularity Lemma and the other uses a more direct counting argument. Although the latter proof is longer, it gives better estimates and allows $F$ to grow with $n$. As an application of our theorem, we present new results on the generalization of the Turán problem introduced by Caro and Yuster [Electronic J. Combin. 7 (2000)].


10.37236/1735 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Dhruv Mubayi ◽  
Yi Zhao

Given positive integers $n,k,t$, with $2 \le k\le n$, and $t < 2^k$, let $m(n,k,t)$ be the minimum size of a family ${\cal F}$ of nonempty subsets of $[n]$ such that every $k$-set in $[n]$ contains at least $t$ sets from ${\cal F}$, and every $(k-1)$-set in $[n]$ contains at most $t-1$ sets from ${\cal F}$. Sloan et al. determined $m(n, 3, 2)$ and Füredi et al. studied $m(n, 4, t)$ for $t=2, 3$. We consider $m(n, 3, t)$ and $m(n, 4, t)$ for all the remaining values of $t$ and obtain their exact values except for $k=4$ and $t= 6, 7, 11, 12$. For example, we prove that $ m(n, 4, 5) = {n \choose 2}-17$ for $n\ge 160$. The values of $m(n, 4, t)$ for $t=7,11,12$ are determined in terms of well-known (and open) Turán problems for graphs and hypergraphs. We also obtain bounds of $m(n, 4, 6)$ that differ by absolute constants.


2021 ◽  
Vol 344 (9) ◽  
pp. 112517
Author(s):  
Xiutao Zhu ◽  
Yaojun Chen

2018 ◽  
Vol 20 (5) ◽  
pp. 1139-1159 ◽  
Author(s):  
Christian Reiher ◽  
Vojtěch Rödl ◽  
Mathias Schacht

2022 ◽  
Vol 345 (3) ◽  
pp. 112743
Author(s):  
Dániel Gerbner ◽  
Zoltán Lóránt Nagy ◽  
Máté Vizer

COMBINATORICA ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 299-322 ◽  
Author(s):  
Zoltán Füredi ◽  
Tao Jiang ◽  
Robert Seiver

2012 ◽  
Vol 21 (3) ◽  
pp. 442-450 ◽  
Author(s):  
HAO HUANG ◽  
PO-SHEN LOH ◽  
BENNY SUDAKOV

More than forty years ago, Erdős conjectured that for any $t \leq \frac{n}{k}$, every k-uniform hypergraph on n vertices without t disjoint edges has at most max${\binom{kt-1}{k}, \binom{n}{k}-\binom{n-t+1}{k}\}$ edges. Although this appears to be a basic instance of the hypergraph Turán problem (with a t-edge matching as the excluded hypergraph), progress on this question has remained elusive. In this paper, we verify this conjecture for all $t < \frac{n}{3k^2}$. This improves upon the best previously known range $t = O\bigl(\frac{n}{k^3}\bigr)$, which dates back to the 1970s.


Sign in / Sign up

Export Citation Format

Share Document