scholarly journals The Non-Crossing Graph

10.37236/1140 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Nathan Linial ◽  
Michael Saks ◽  
David Statter

Two sets are non-crossing if they are disjoint or one contains the other. The non-crossing graph ${\rm NC}_n$ is the graph whose vertex set is the set of nonempty subsets of $[n]=\{1,\ldots,n\}$ with an edge between any two non-crossing sets. Various facts, some new and some already known, concerning the chromatic number, fractional chromatic number, independence number, clique number and clique cover number of this graph are presented. For the chromatic number of this graph we show: $$ n(\log_e n -\Theta(1)) \le \chi({\rm NC}_n) \le n (\lceil\log_2 n\rceil-1). $$

2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


10.37236/5642 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Seyed Saeed Changiz Rezaei ◽  
Ehsan Chiniforooshan

Let $F_G(P)$ be a functional defined on the set of all the probability distributions on the vertex set of a graph $G$. We say that $G$ is symmetric with respect to $F_G(P)$ if the uniform distribution on $V(G)$ maximizes $F_G(P)$. Using the combinatorial definition of the entropy of a graph in terms of its vertex packing polytope and the relationship between the graph entropy and fractional chromatic number, we characterize all graphs which are symmetric with respect to graph entropy. We show that a graph is symmetric with respect to graph entropy if and only if its vertex set can be uniformly covered by its maximum size independent sets. This is also equivalent to saying that the fractional chromatic number of $G$, $\chi_f(G)$, is equal to $\frac{n}{\alpha(G)}$, where $n = |V(G)|$ and $\alpha(G)$ is the independence number of $G$. Furthermore, given any strictly positive probability distribution $P$ on the vertex set of a graph $G$, we show that $P$ is a maximizer of the entropy of graph $G$ if and only if its vertex set can be uniformly covered by its maximum weighted independent sets. We also show that the problem of deciding if a graph is symmetric with respect to graph entropy, where the weight of the vertices is given by probability distribution $P$, is co-NP-hard.


10.37236/963 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

The unitary Cayley graph $X_n$ has vertex set $Z_n=\{0,1, \ldots ,n-1\}$. Vertices $a, b$ are adjacent, if gcd$(a-b,n)=1$. For $X_n$ the chromatic number, the clique number, the independence number, the diameter and the vertex connectivity are determined. We decide on the perfectness of $X_n$ and show that all nonzero eigenvalues of $X_n$ are integers dividing the value $\varphi(n)$ of the Euler function.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2012 ◽  
Vol 12 (03) ◽  
pp. 1250179 ◽  
Author(s):  
A. AZIMI ◽  
A. ERFANIAN ◽  
M. FARROKHI D. G.

Let R be a commutative ring with nonzero identity. Then the Jacobson graph of R, denoted by 𝔍R, is defined as a graph with vertex set R\J(R) such that two distinct vertices x and y are adjacent if and only if 1 - xy is not a unit of R. We obtain some graph theoretical properties of 𝔍R including its connectivity, planarity and perfectness and we compute some of its numerical invariants, namely diameter, girth, dominating number, independence number and vertex chromatic number and give an estimate for its edge chromatic number.


2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


Author(s):  
Mohammad HABIBI ◽  
Ece YETKİN ÇELİKEL ◽  
Ci̇hat ABDİOĞLU

Let [Formula: see text] be a ring (not necessarily commutative) with identity. The clean graph [Formula: see text] of a ring [Formula: see text] is a graph with vertices in form [Formula: see text], where [Formula: see text] is an idempotent and [Formula: see text] is a unit of [Formula: see text]; and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] or [Formula: see text]. In this paper, we focus on [Formula: see text], the subgraph of [Formula: see text] induced by the set [Formula: see text] is a nonzero idempotent element of [Formula: see text]. It is observed that [Formula: see text] has a crucial role in [Formula: see text]. The clique number, the chromatic number, the independence number and the domination number of the clean graph for some classes of rings are determined. Moreover, the connectedness and the diameter of [Formula: see text] are studied.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bikash Barman ◽  
Kukil Kalpa Rajkhowa

PurposeThe authors study the interdisciplinary relation between graph and algebraic structure ring defining a new graph, namely “non-essential sum graph”. The nonessential sum graph, denoted by NES(R), of a commutative ring R with unity is an undirected graph whose vertex set is the collection of all nonessential ideals of R and any two vertices are adjacent if and only if their sum is also a nonessential ideal of R.Design/methodology/approachThe method is theoretical.FindingsThe authors obtain some properties of NES(R) related with connectedness, diameter, girth, completeness, cut vertex, r-partition and regular character. The clique number, independence number and domination number of NES(R) are also found.Originality/valueThe paper is original.


2017 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Kemal Toker

$\Gamma (SL_{X})$ is defined and has been investigated in (Toker, 2016). In this paper our main aim is to extend this study over  $\Gamma (SL_{X})$ to the tensor product. The diameter, radius, girth, domination number, independence number, clique number, chromatic number and chromatic index of $\Gamma (SL_{X_{1}})\otimes \Gamma (SL_{X_{2}})$ has been established. Moreover, we have determined when $\Gamma (SL_{X_{1}})\otimes \Gamma (SL_{X_{2}})$ is a perfect graph.


Sign in / Sign up

Export Citation Format

Share Document