scholarly journals Multi-Statistic Enumeration of Two-Stack Sortable Permutations

10.37236/1359 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Mireille Bousquet-Mélou

Using Zeilberger's factorization of two-stack-sortable permutations, we write a functional equation — of a strange sort — that defines their generating function according to five statistics: length, number of descents, number of right-to-left and left-to-right maxima, and a fifth statistic that is closely linked to the factorization. Then, we show how one can translate this functional equation into a polynomial one. We thus prove that our five-variable generating function for two-stack-sortable permutations is algebraic of degree 20.


1971 ◽  
Vol 8 (04) ◽  
pp. 708-715 ◽  
Author(s):  
Emlyn H. Lloyd

The present theory of finite reservoirs is not rich in general theorems even when of the simple Moran type, with unit draft and stationary discrete independent-sequence inflows. For the corresponding systems with unbounded capacity however there are two classes of results which have been known for some time. One of these classes is concerned with the time-dependent solution, where the theory provides a functional equation for the generating function of the time to first emptiness (Kendall (1957)), and the other with the asymptotic stationary distribution of reservoir contents, for which an explicit formula for the generating function is available (Moran (1959)).



1971 ◽  
Vol 8 (3) ◽  
pp. 589-598 ◽  
Author(s):  
Krishna B. Athreya

The functional equation ϕ(mu) = h(ϕ(u)) where is a probability generating function with 1 < m = h'(1 –) < ∞ and where F(t) is a non-decreasing right continuous function with F(0 –) = 0, F(0 +) < 1 and F(+ ∞) = 1 arises in a Galton-Watson process in a natural way. We prove here that for any if and only if This unifies several results in the literature on the supercritical Galton-Watson process. We generalize this to an age dependent branching process case as well.



1971 ◽  
Vol 8 (03) ◽  
pp. 589-598 ◽  
Author(s):  
Krishna B. Athreya

The functional equation ϕ(mu) = h(ϕ(u)) where is a probability generating function with 1 &lt; m = h'(1 –) &lt; ∞ and where F(t) is a non-decreasing right continuous function with F(0 –) = 0, F(0 +) &lt; 1 and F(+ ∞) = 1 arises in a Galton-Watson process in a natural way. We prove here that for any if and only if This unifies several results in the literature on the supercritical Galton-Watson process. We generalize this to an age dependent branching process case as well.



2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Colin Defant ◽  
Andrew Elvey Price ◽  
Anthony Guttmann

We derive a simple functional equation with two catalytic variables characterising the generating function of 3-stack-sortable permutations. Using this functional equation, we extend the 174-term series to 1000 terms. From this series, we conjecture that the generating function behaves as  $$W(t) \sim C_0(1-\mu_3 t)^\alpha \cdot \log^\beta(1-\mu_3 t), $$ so that $$[t^n]W(t)=w_n \sim \frac{c_0\mu_3^n}{  n^{(\alpha+1)}\cdot \log^\lambda{n}} ,$$ where $\mu_3 = 9.69963634535(30),$ $\alpha = 2.0 \pm 0.25.$ If $\alpha = 2$ exactly, then $\lambda = -\beta+1$, and we estimate $\beta \approx -2,$ but with a wide uncertainty of $\pm 1.$  If $\alpha$ is not an integer, then $\lambda=-\beta$, but we cannot give a useful estimate of $\beta$. The growth constant estimate (just) contradicts a conjecture of the first author that $$9.702 < \mu_3 \le 9.704.$$ We also prove a new rigorous lower bound of $\mu_3\geq 9.4854$, allowing us to disprove a conjecture of Bóna.  We then further extend the series using differential-approximants to obtain approximate coefficients $O(t^{2000}),$ expected to be accurate to $20$ significant digits, and use the approximate coefficients to provide additional evidence supporting the results obtained from the exact coefficients.



2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Lara Pudwell ◽  
Connor Scholten ◽  
Tyler Schrock ◽  
Alexa Serrato

We consider the enumeration of binary trees containing noncontiguous binary tree patterns. First, we show that any two ℓ-leaf binary trees are contained in the set of all n-leaf trees the same number of times. We give a functional equation for the multivariate generating function for number of n-leaf trees containing a specified number of copies of any path tree, and we analyze tree patterns with at most 4 leaves. The paper concludes with implications for pattern containment in permutations.



2015 ◽  
Vol 25 (2) ◽  
pp. 157-176 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck

Abstract A permutation of length n may be represented, equivalently, by a sequence a1a2 • • • an satisfying 0 < ai < i for all z, which is called an inversion sequence. In analogy to the usual case for permutations, the pattern avoidance question is addressed for inversion sequences. In particular, explicit formulas and/or generating functions are derived which count the inversion sequences of a given length that avoid a single pattern of length three. Among the sequences encountered are the Fibonacci numbers, the Schröder numbers, and entry A200753 in OEIS. We make use of both algebraic and combinatorial methods to establish our results. An explicit Injection is given between two of the avoidance classes, and in three cases, the kernel method is used to solve a functional equation satisfied by the generating function enumerating the class in question.



10.37236/1266 ◽  
1995 ◽  
Vol 3 (2) ◽  
Author(s):  
Ira M. Gessel

A descent of a rooted tree with totally ordered vertices is a vertex that is greater than at least one of its children. A leaf is a vertex with no children. We show that the number of forests of rooted trees on a given vertex set with $i+1$ leaves and $j$ descents is equal to the number with $j+1$ leaves and $i$ descents. We do this by finding a functional equation for the corresponding exponential generating function that shows that it is symmetric.



2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Olivier Bernardi ◽  
Mireille Bousquet-Mélou ◽  
Kilian Raschel

Extended abstract presented at the conference FPSAC 2016, Vancouver. International audience In the 1970s, Tutte developed a clever algebraic approach, based on certain " invariants " , to solve a functional equation that arises in the enumeration of properly colored triangulations. The enumeration of plane lattice walks confined to the first quadrant is governed by similar equations, and has led in the past decade to a rich collection of attractive results dealing with the nature (algebraic, D-finite or not) of the associated generating function, depending on the set of allowed steps. We first adapt Tutte's approach to prove (or reprove) the algebraicity of all quadrant models known or conjectured to be algebraic (with one small exception). This includes Gessel's famous model, and the first proof ever found for one model with weighted steps. To be applicable, the method requires the existence of two rational functions called invariant and decoupling function respectively. When they exist, algebraicity comes out (almost) automatically. Then, we move to an analytic viewpoint which has already proved very powerful, leading in particular to integral expressions of the generating function in the non-D-finite cases, as well as to proofs of non-D-finiteness. We develop in this context a weaker notion of invariant. Now all quadrant models have invariants, and for those that have in addition a decoupling function, we obtain integral-free expressions of the generating function, and a proof that this series is differentially algebraic (that is, satisfies a non-linear differential equation).



1971 ◽  
Vol 8 (4) ◽  
pp. 708-715 ◽  
Author(s):  
Emlyn H. Lloyd

The present theory of finite reservoirs is not rich in general theorems even when of the simple Moran type, with unit draft and stationary discrete independent-sequence inflows. For the corresponding systems with unbounded capacity however there are two classes of results which have been known for some time. One of these classes is concerned with the time-dependent solution, where the theory provides a functional equation for the generating function of the time to first emptiness (Kendall (1957)), and the other with the asymptotic stationary distribution of reservoir contents, for which an explicit formula for the generating function is available (Moran (1959)).



Author(s):  
E. M. Wright

SynopsisAn (n, q) graph is a graph on n labelled points and q lines without loops or multiple lines. We write ν(n, q) for the number of smooth (n, q) graphs, i.e. connected graphs without end points, and ν = V(Z, Y) = ∑n,q ν(n,q)ZnYq /n! for the exponential generating function of ν(n,q). We use the Riddell “core and mantle” method to find an explicit form for V (not, as usual with this method, only a functional equation). From this we deduce a partial differential equation satisfied by V. We interpret this equation in purely combinatorial terms. We write Vk = ∑ n ν(n, n + k)Xn/n! and find a recurrence formula for Vk for successive k. We use these and other results to find an asymptotic expansion for ν(n,q) as n→∞ when (q/n) − log n − log log n→ + ∞ and an asymptotic approximation to ν(n,n + k) when 0 < k = o and to log ν(n, n + k) when k < (1−ε).



Sign in / Sign up

Export Citation Format

Share Document