scholarly journals Colourful Theorems and Indices of Homomorphism Complexes

10.37236/2302 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Gábor Simonyi ◽  
Claude Tardif ◽  
Ambrus Zsbán

We extend the colourful complete bipartite subgraph theorems of [G. Simonyi, G. Tardos, Local chromatic number, Ky Fan's theorem,  and circular colorings, Combinatorica 26 (2006), 587--626] and [G. Simonyi, G. Tardos, Colorful subgraphs of Kneser-like graphs, European J. Combin. 28 (2007), 2188--2200] to more general topological settings. We give examples showing that the hypotheses are indeed more general. We use our results to show that the topological bounds on chromatic numbers of digraphs with tree duality are at most one better than the clique number. We investigate combinatorial and complexity-theoretic aspects of relevant order-theoretic maps.


2015 ◽  
Vol 19 (6) ◽  
pp. 101-106
Author(s):  
A. I. Antonov ◽  
V. A. Bondarenko

We provide an effective description of graphs of polyhedra for GRAPH PARTITIONING and COMPLETE BIPARTITE SUBGRAPH problems. We establish the fact, that the clique number for each of this problems increases exponentially with the dimension of the space.



2018 ◽  
Vol 2 (2) ◽  
pp. 82
Author(s):  
K. Kaliraj ◽  
V. Kowsalya ◽  
Vernold Vivin

<p>In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph <span class="math"><em>G</em></span> into a new graph <span class="math"><em>μ</em>(<em>G</em>)</span>, we now call the Mycielskian of <span class="math"><em>G</em></span>, which has the same clique number as <span class="math"><em>G</em></span> and whose chromatic number equals <span class="math"><em>χ</em>(<em>G</em>) + 1</span>. In this paper, we find the star chromatic number for the Mycielskian graph of complete graphs, paths, cycles and complete bipartite graphs.</p>



Author(s):  
János Pach ◽  
Gábor Tardos ◽  
Géza Tóth

Abstract The disjointness graph G = G(𝒮) of a set of segments 𝒮 in ${\mathbb{R}^d}$ , $$d \ge 2$$ , is a graph whose vertex set is 𝒮 and two vertices are connected by an edge if and only if the corresponding segments are disjoint. We prove that the chromatic number of G satisfies $\chi (G) \le {(\omega (G))^4} + {(\omega (G))^3}$ , where ω(G) denotes the clique number of G. It follows that 𝒮 has Ω(n1/5) pairwise intersecting or pairwise disjoint elements. Stronger bounds are established for lines in space, instead of segments. We show that computing ω(G) and χ(G) for disjointness graphs of lines in space are NP-hard tasks. However, we can design efficient algorithms to compute proper colourings of G in which the number of colours satisfies the above upper bounds. One cannot expect similar results for sets of continuous arcs, instead of segments, even in the plane. We construct families of arcs whose disjointness graphs are triangle-free (ω(G) = 2), but whose chromatic numbers are arbitrarily large.



10.37236/6154 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Meysam Alishahi

There are several topological results ensuring in any properly colored graph the existence of a colorful complete bipartite subgraph, whose order is bounded from below by some topological invariants of some topological spaces associated to the graph. Meunier [Colorful subhypergraphs in Kneser hypergraphs, The Electronic Journal of Combinatorics, 2014] presented the first colorful type result for uniform hypergraphs. In this paper, we give some new generalizations of the $\mathbb{Z}_p$-Tucker lemma and by use of them, we improve Meunier's result and some other colorful results by Simonyi, Tardif, and Zsbán [Colourful theorems and indices of homomorphism complexes, The Electronic Journal of Combinatorics, 2014] and by Simonyi and Tardos [Colorful subgraphs in Kneser-like graphs, European Journal of Combinatorics, 2007] to uniform hypergraphs. Also, we introduce some new lower bounds for the chromatic number and local chromatic number of uniform hypergraphs. A hierarchy between these lower bounds is presented as well.



2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.



10.37236/632 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Landon Rabern

We prove that if $G$ is the line graph of a multigraph, then the chromatic number $\chi(G)$ of $G$ is at most $\max\left\{\omega(G), \frac{7\Delta(G) + 10}{8}\right\}$ where $\omega(G)$ and $\Delta(G)$ are the clique number and the maximum degree of $G$, respectively. Thus Brooks' Theorem holds for line graphs of multigraphs in much stronger form. Using similar methods we then prove that if $G$ is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then $G$ contains a clique on $\Delta(G)$ vertices. Thus the Borodin-Kostochka Conjecture holds for line graphs of multigraphs.



10.37236/1805 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Seog-Jin Kim ◽  
Alexandr Kostochka ◽  
Kittikorn Nakprasit

Let $G$ be the intersection graph of a finite family of convex sets obtained by translations of a fixed convex set in the plane. We show that every such graph with clique number $k$ is $(3k-3)$-degenerate. This bound is sharp. As a consequence, we derive that $G$ is $(3k-2)$-colorable. We show also that the chromatic number of every intersection graph $H$ of a family of homothetic copies of a fixed convex set in the plane with clique number $k$ is at most $6k-6$.



10.37236/2125 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Gaku Liu

Let $Q(n,c)$ denote the minimum clique number over graphs with $n$ vertices and chromatic number $c$. We investigate the asymptotics of $Q(n,c)$ when $n/c$ is held constant. We show that when $n/c$ is an integer $\alpha$, $Q(n,c)$ has the same growth order as the inverse function of the Ramsey number $R(\alpha+1,t)$ (as a function of $t$). Furthermore, we show that if certain asymptotic properties of the Ramsey numbers hold, then $Q(n,c)$ is in fact asymptotically equivalent to the aforementioned inverse function. We use this fact to deduce that $Q(n,\lceil n/3 \rceil)$ is asymptotically equivalent to the inverse function of $R(4,t)$.



2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.



2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.



Sign in / Sign up

Export Citation Format

Share Document