Disjointness graphs of segments in the space

Author(s):  
János Pach ◽  
Gábor Tardos ◽  
Géza Tóth

Abstract The disjointness graph G = G(𝒮) of a set of segments 𝒮 in ${\mathbb{R}^d}$ , $$d \ge 2$$ , is a graph whose vertex set is 𝒮 and two vertices are connected by an edge if and only if the corresponding segments are disjoint. We prove that the chromatic number of G satisfies $\chi (G) \le {(\omega (G))^4} + {(\omega (G))^3}$ , where ω(G) denotes the clique number of G. It follows that 𝒮 has Ω(n1/5) pairwise intersecting or pairwise disjoint elements. Stronger bounds are established for lines in space, instead of segments. We show that computing ω(G) and χ(G) for disjointness graphs of lines in space are NP-hard tasks. However, we can design efficient algorithms to compute proper colourings of G in which the number of colours satisfies the above upper bounds. One cannot expect similar results for sets of continuous arcs, instead of segments, even in the plane. We construct families of arcs whose disjointness graphs are triangle-free (ω(G) = 2), but whose chromatic numbers are arbitrarily large.

2020 ◽  
Vol 4 (2) ◽  
pp. 126
Author(s):  
Dian Kastika Syofyan ◽  
Edy Tri Baskoro ◽  
Hilda Assiyatun

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>The investigation on the locating-chromatic number of a graph was initiated by Chartrand </span><span>et al. </span><span>(2002). This concept is in fact a special case of the partition dimension of a graph. This topic has received much attention. However, the results are still far from satisfaction. We can define the locating-chromatic number of a graph </span><span>G </span><span>as the smallest integer </span><span>k </span><span>such that there exists a </span><span>k</span><span>-partition of the vertex-set of </span><span>G </span><span>such that all vertices have distinct coordinates with respect to this partition. As we know that the metric dimension of a tree is completely solved. However, the locating-chromatic numbers for most of trees are still open. For </span><span><em>i</em> </span><span>= 1</span><span>, </span><span>2</span><span>, . . . , <em>t</em>, </span><span>let </span><em>T</em><span>i </span><span>be a tree with a fixed edge </span><span>e</span><span>o</span><span>i </span><span>called the terminal edge. The edge-amalgamation of all </span><span>T</span><span>i</span><span>s </span><span>denoted by Edge-Amal</span><span>{</span><span>T</span><span>i</span><span>;</span><span>e</span><span>o</span><span>i</span><span>} </span><span>is a tree formed by taking all the </span><span>T</span><span>i</span><span>s and identifying their terminal edges. In this paper, we study the locating-chromatic number of the edge-amalgamation of arbitrary trees. We give lower and upper bounds for their locating-chromatic numbers and show that the bounds are tight.</span></p></div></div></div>


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


10.37236/1140 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Nathan Linial ◽  
Michael Saks ◽  
David Statter

Two sets are non-crossing if they are disjoint or one contains the other. The non-crossing graph ${\rm NC}_n$ is the graph whose vertex set is the set of nonempty subsets of $[n]=\{1,\ldots,n\}$ with an edge between any two non-crossing sets. Various facts, some new and some already known, concerning the chromatic number, fractional chromatic number, independence number, clique number and clique cover number of this graph are presented. For the chromatic number of this graph we show: $$ n(\log_e n -\Theta(1)) \le \chi({\rm NC}_n) \le n (\lceil\log_2 n\rceil-1). $$


2013 ◽  
Vol 2 (1) ◽  
pp. 14
Author(s):  
Mariza Wenni

Let G and H be two connected graphs. Let c be a vertex k-coloring of aconnected graph G and let = fCg be a partition of V (G) into the resultingcolor classes. For each v 2 V (G), the color code of v is dened to be k-vector: c1; C2; :::; Ck(v) =(d(v; C1); d(v; C2); :::; d(v; Ck)), where d(v; Ci) = minfd(v; x) j x 2 Cg, 1 i k. Ifdistinct vertices have distinct color codes with respect to , then c is called a locatingcoloring of G. The locating chromatic number of G is the smallest natural number ksuch that there are locating coloring with k colors in G. The Cartesian product of graphG and H is a graph with vertex set V (G) V (H), where two vertices (a; b) and (a)are adjacent whenever a = a0and bb02 E(H), or aa0i2 E(G) and b = b, denotedby GH. In this paper, we will study about the locating chromatic numbers of thecartesian product of two paths, the cartesian product of paths and complete graphs, andthe cartesian product of two complete graphs.


10.37236/2302 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Gábor Simonyi ◽  
Claude Tardif ◽  
Ambrus Zsbán

We extend the colourful complete bipartite subgraph theorems of [G. Simonyi, G. Tardos, Local chromatic number, Ky Fan's theorem,  and circular colorings, Combinatorica 26 (2006), 587--626] and [G. Simonyi, G. Tardos, Colorful subgraphs of Kneser-like graphs, European J. Combin. 28 (2007), 2188--2200] to more general topological settings. We give examples showing that the hypotheses are indeed more general. We use our results to show that the topological bounds on chromatic numbers of digraphs with tree duality are at most one better than the clique number. We investigate combinatorial and complexity-theoretic aspects of relevant order-theoretic maps.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Tongsuo Wu ◽  
Meng Ye ◽  
Dancheng Lu ◽  
Houyi Yu

We study the co maximal graph Ω(R), the induced subgraph Γ(R) of Ω(R) whose vertex set is R∖(U(R)∪J(R)), and a retract Γr(R) of Γ(R), where R is a commutative ring. For a graph Γ(R) which contains a cycle, we show that the core of Γ(R) is a union of triangles and rectangles, while a vertex in Γ(R) is either an end vertex or a vertex in the core. For a nonlocal ring R, we prove that both the chromatic number and clique number of Γ(R) are identical with the number of maximal ideals of R. A graph Γr(R) is also introduced on the vertex set {Rx∣x∈R∖(U(R)∪J(R))}, and graph properties of Γr(R) are studied.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 304
Author(s):  
Mihai Talmaciu ◽  
Luminiţa Dumitriu ◽  
Ioan Şuşnea ◽  
Victor Lepin ◽  
László Barna Iantovics

The weighted independent set problem on P 5 -free graphs has numerous applications, including data mining and dispatching in railways. The recognition of P 5 -free graphs is executed in polynomial time. Many problems, such as chromatic number and dominating set, are NP-hard in the class of P 5 -free graphs. The size of a minimum independent feedback vertex set that belongs to a P 5 -free graph with n vertices can be computed in O ( n 16 ) time. The unweighted problems, clique and clique cover, are NP-complete and the independent set is polynomial. In this work, the P 5 -free graphs using the weak decomposition are characterized, as is the dominating clique, and they are given an O ( n ( n + m ) ) recognition algorithm. Additionally, we calculate directly the clique number and the chromatic number; determine in O ( n ) time, the size of a minimum independent feedback vertex set; and determine in O ( n + m ) time the number of stability, the dominating number and the minimum clique cover.


Filomat ◽  
2020 ◽  
Vol 34 (10) ◽  
pp. 3275-3286
Author(s):  
Rachid Lemdani ◽  
Moncef Abbas ◽  
Jasmina Ferme

Given a graph G and a positive integer i, an i-packing in G is a subset W of the vertex set of G such that the distance between any two distinct vertices from W is greater than i. The packing chromatic number of a graph G, ??(G), is the smallest integer k such that the vertex set of G can be partitioned into sets Vi, i ? {1,..., k}, where each Vi is an i-packing. In this paper, we present some general properties of packing chromatic numbers of finite super subdivisions of graphs. We determine the packing chromatic numbers of the finite super subdivisions of complete graphs, cycles and some neighborhood corona graphs.


Sign in / Sign up

Export Citation Format

Share Document