effective description
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 39)

H-INDEX

18
(FIVE YEARS 5)

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Sol M. Fernández Arancibia ◽  
Hernán E. Grecco ◽  
Luis G. Morelli

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 374
Author(s):  
Mattia Rossi ◽  
Maria Stefania Carmeli ◽  
Marco Mauri

This paper proposes a model-based two-degree-of-freedom (2DOF) speed control for a medium voltage (MV) variable speed drive (VSD) connected to a centrifugal compressor (CC) train. Torsional mode excitations in the drive shaft due to converter switching behaviour are considered. An effective description of the harmonics transfer is proposed. The tuning strategy aims to optimize the tracking behaviour of the step and ramp command, taking care of critical speed excitations. The stability of the closed-loop dynamics against time delay and drive parameter variations are studied by means of Nyquist diagrams and time-domain simulations. A descriptive method for the process damping behaviour is proposed. The control strategy is evaluated through simulations as well as an experimental setup, based on a hardware in the loop (HIL) in a master–slave configuration.


Author(s):  
Vijay Balasubramanian ◽  
Arjun Kar ◽  
Tomonori Ugajin

Abstract We study two disjoint universes in an entangled pure state. When only one universe contains gravity, the path integral for the n th Rényi entropy includes a wormhole between the n copies of the gravitating universe, leading to a standard “island formula” for entanglement entropy consistent with unitarity of quantum information. When both universes contain gravity, gravitational corrections to this configuration lead to a violation of unitarity. However, the path integral is now dominated by a novel wormhole with 2n boundaries connecting replica copies of both universes. The analytic continuation of this contribution involves a quotient by Ζ n replica symmetry, giving a cylinder connecting the two universes. When entanglement is large, this configuration has an effective description as a “swap wormhole”, a geometry in which the boundaries of the two universes are glued together by a “swaperator”. This description allows precise computation of a generalized entropy-like formula for entanglement entropy. The quantum extremal surface computing the entropy lives on the Lorentzian continuation of the cylinder/swap wormhole, which has a connected Cauchy slice stretching between the universes – a realization of the ER=EPR idea. The new wormhole restores unitarity of quantum information.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Giuseppe Gaetano Luciano ◽  
Massimo Blasone

AbstractFlavor mixing of quantum fields was found to be responsible for the breakdown of the thermality of Unruh effect. Recently, this result was revisited in the context of nonextensive Tsallis thermostatistics, showing that the emergent vacuum condensate can still be featured as a thermal-like bath, provided that the underlying statistics is assumed to obey Tsallis prescription. This was analyzed explicitly for bosons. Here we extend this study to Dirac fermions and in particular to neutrinos. Working in the relativistic approximation, we provide an effective description of the modified Unruh spectrum in terms of the q-generalized Tsallis statistics, the q-entropic index being dependent on the mixing parameters $$\sin \theta $$ sin θ and $$\Delta m$$ Δ m . As opposed to bosons, we find $$q>1$$ q > 1 , which is indicative of the subadditivity regime of Tsallis entropy. An intuitive understanding of this result is discussed in relation to the nontrivial entangled structure exhibited by the quantum vacuum for mixed fields, combined with the Pauli exclusion principle.


Author(s):  
Rong-Gen Cai ◽  
Gansukh Tumurtushaa ◽  
Yun-Long Zhang

As an approximation to the near horizon regime of black holes, the Rindler fluid was proposed on an accelerating cutoff surface in the flat spacetime. The concept of the Rindler fluid was then generalized into a flat bulk with the cutoff surface of the induced de Sitter and FRW universe, such that an effective description of dark fluid in the accelerating universe can be investigated.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Suchetan Das ◽  
Bobby Ezhuthachan ◽  
Somnath Porey ◽  
Baishali Roy

Abstract We construct an infinite class of eigenmodes with integer eigenvalues for the Vacuum Modular Hamiltonian of a single interval N in 2d CFT and study some of its interesting properties, which includes its action on OPE blocks as well as its bulk duals. Our analysis suggests that these eigenmodes, like the OPE blocks have a natural description on the so called kinematic space of CFT2 and in particular realize the Virasoro algebra of the theory on this kinematic space. Taken together, our results hints at the possibility of an effective description of the CFT2 in the kinematic space language.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Giuseppe Gaetano Luciano

AbstractIt has been argued that non-Gaussian statistics provide a natural framework to investigate semiclassical effects in the context of Planck-scale deformations of the Heisenberg uncertainty relation. Here we substantiate this point by considering the Unruh effect as a specific playground. By working in the realm of quantum field theory, we reformulate the derivation of the modified Unruh effect from the generalized uncertainty principle (GUP) in the language of the nonextensive Tsallis thermostatistics. We find a nontrivial monotonic relation between the nonextensivity index q and the GUP deformation parameter $$\beta $$ β , which generalizes an earlier result obtained in quantum mechanics. We then extend our analysis to black hole thermodynamics. We preliminarily discuss our outcome in the broader context of an effective description of Planck-scale gravitational physics based on Tsallis theory.


Author(s):  
Nick E. Mavromatos ◽  
Joan Solà Peracaula

AbstractIn previous works, we have derived a Running Vacuum Model (RVM) for a string Universe, which provides an effective description of the evolution of 4-dimensional string-inspired cosmologies from inflation till the present epoch. In the context of this “stringy RVM” version, it is assumed that the early Universe is characterised by purely gravitational degrees of freedom, from the massless gravitational string multiplet, including the antisymmetric tensor field. The latter plays an important role, since its dual gives rise to a ‘stiff’ gravitational axion “matter”, which in turn couples to the gravitational anomaly terms, assumed to be non-trivial at early epochs. In the presence of primordial gravitational wave (GW) perturbations, such anomalous couplings lead to an RVM-like dynamical inflation, without external inflatons. We review here this framework and discuss potential scenarios for the generation of such primordial GW, among which the formation of unstable domain walls, which eventually collapse in a non-spherical-symmetric manner, giving rise to GW. We also remark that the same type of “stiff” axionic matter could provide, upon the generation of appropriate potentials during the post-inflationary eras, (part of) the Dark Matter (DM) in the Universe, which could well be ultralight, depending on the parameters of the string-inspired model. All in all, the new (stringy) mechanism for RVM inflation preserves the basic structure of the original (and more phenomenological) RVM, as well as its main advantages: namely, a mechanism for graceful exit and for generating a huge amount of entropy capable of explaining the horizon problem. It also predicts axionic DM and the existence of mild dynamical Dark Energy (DE) of quintessence type in the present universe, both being “living fossils” of the inflationary stages of the cosmic evolution. Altogether the modern RVM appears to be a theoretically sound (string-based) approach to cosmology with a variety of phenomenologically testable consequences.


2021 ◽  
Vol 183 (1) ◽  
Author(s):  
Alberto Fachechi

AbstractWe examine the duality relating the equilibrium dynamics of the mean-field p-spin ferromagnets at finite size in the Guerra’s interpolation scheme and the Burgers hierarchy. In particular, we prove that—for fixed p—the expectation value of the order parameter on the first side w.r.t. the generalized partition function satisfies the $$p-1$$ p - 1 -th element in the aforementioned class of nonlinear equations. In the light of this duality, we interpret the phase transitions in the thermodynamic limit of the statistical mechanics model with the development of shock waves in the PDE side. We also obtain the solutions for the p-spin ferromagnets at fixed N, allowing us to easily generate specific solutions of the corresponding equation in the Burgers hierarchy. Finally, we obtain an effective description of the finite N equilibrium dynamics of the $$p=2$$ p = 2 model with some standard tools in PDE side.


Author(s):  
Eduard Marusic-Paloka ◽  
Matko Ljulj ◽  
Igor Pazanin ◽  
Josip Tambaca

The standard engineer's model for heat transfer between the fluid flowing through the pipe and the exterior medium neglects the effects of the pipe's wall. The goal of this paper is to prove that they are not always negligible. Comparing the ratio between diffusivities of the fluid and the wall with the wall's thickness, using rigorous asymptotic analysis, we find five different models for effective description of the heat exchange process.


Sign in / Sign up

Export Citation Format

Share Document