scholarly journals Invariant Principal Order Ideals under Foata’s Transformation

10.37236/2680 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Teresa X.S. Li ◽  
Melissa Y.F. Miao

Let $\Phi$ denote  Foata's second fundamental transformation on permutations. For a permutation $\sigma$ in the symmetric group $S_n$, let $\widetilde{\Lambda}_{\sigma}=\{\pi\in S_n\colon\pi\leq_{w} \sigma\}$ be the principal order ideal generated by $\sigma$  in the weak order $\leq_{w}$. Björner and Wachs have shown that $\widetilde{\Lambda}_{\sigma}$ is invariant under $\Phi$ if and only if $\sigma$ is a 132-avoiding permutation. In this paper, we consider the invariance property of  $\Phi$ on the principal order ideals ${\Lambda}_{\sigma}=\{\pi\in S_n\colon \pi\leq \sigma\}$ with respect to the Bruhat order $\leq$.  We obtain a characterization  of permutations $\sigma$ such that ${\Lambda}_{\sigma}$ are invariant under $\Phi$. We also consider the invariant principal order  ideals with respect to the Bruhat order  under Han's bijection $H$. We find  that ${\Lambda}_{\sigma}$ is invariant under the bijection $H$ if and only if it is invariant under the transformation $\Phi$.

2015 ◽  
Vol Vol. 17 no. 1 (Combinatorics) ◽  
Author(s):  
Bridget Eileen Tenner

Combinatorics International audience In this paper we study those generic intervals in the Bruhat order of the symmetric group that are isomorphic to the principal order ideal of a permutation w, and consider when the minimum and maximum elements of those intervals are related by a certain property of their reduced words. We show that the property does not hold when w is a decomposable permutation, and that the property always holds when w is the longest permutation.


2018 ◽  
Vol 50 (3) ◽  
pp. 706-725
Author(s):  
Julie Fournier

Abstract A deterministic application θ:ℝ2→ℝ2 deforms bijectively and regularly the plane and allows the construction of a deformed random field X∘θ:ℝ2→ℝ from a regular, stationary, and isotropic random field X:ℝ2→ℝ. The deformed field X∘θ is, in general, not isotropic (and not even stationary), however, we provide an explicit characterization of the deformations θ that preserve the isotropy. Further assuming that X is Gaussian, we introduce a weak form of isotropy of the field X∘θ, defined by an invariance property of the mean Euler characteristic of some of its excursion sets. We prove that deformed fields satisfying this property are strictly isotropic. In addition, we are able to identify θ, assuming that the mean Euler characteristic of excursion sets of X∘θ over some basic domain is known.


10.37236/1871 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
John R. Stembridge

It is a well-known theorem of Deodhar that the Bruhat ordering of a Coxeter group is the conjunction of its projections onto quotients by maximal parabolic subgroups. Similarly, the Bruhat order is also the conjunction of a larger number of simpler quotients obtained by projecting onto two-sided (i.e., "double") quotients by pairs of maximal parabolic subgroups. Each one-sided quotient may be represented as an orbit in the reflection representation, and each double quotient corresponds to the portion of an orbit on the positive side of certain hyperplanes. In some cases, these orbit representations are "tight" in the sense that the root system induces an ordering on the orbit that yields effective coordinates for the Bruhat order, and hence also provides upper bounds for the order dimension. In this paper, we (1) provide a general characterization of tightness for one-sided quotients, (2) classify all tight one-sided quotients of finite Coxeter groups, and (3) classify all tight double quotients of affine Weyl groups.


2018 ◽  
Vol 12 (3) ◽  
pp. 339-347 ◽  
Author(s):  
Mijail Borges-Quintana ◽  
Miguel Ángel Borges-Trenard ◽  
Edgar Martínez-Moro
Keyword(s):  

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Bridget Eileen Tenner

International audience The Bruhat order gives a poset structure to any Coxeter group. The ideal of elements in this poset having boolean principal order ideals forms a simplicial poset. This simplicial poset defines the boolean complex for the group. In a Coxeter system of rank n, we show that the boolean complex is homotopy equivalent to a wedge of (n-1)-dimensional spheres. The number of these spheres is the boolean number, which can be computed inductively from the unlabeled Coxeter system, thus defining a graph invariant. For certain families of graphs, the boolean numbers have intriguing combinatorial properties. This work involves joint efforts with Claesson, Kitaev, and Ragnarsson. \par L'ordre de Bruhat munit tout groupe de Coxeter d'une structure de poset. L'idéal composé des éléments de ce poset engendrant des idéaux principaux ordonnés booléens, forme un poset simplicial. Ce poset simplicial définit le complexe booléen pour le groupe. Dans un système de Coxeter de rang n, nous montrons que le complexe booléen est homotopiquement équivalent à un bouquet de sphères de dimension (n-1). Le nombre de ces sphères est le nombre booléen, qui peut être calculé inductivement à partir du système de Coxeter non-étiquetté; définissant ainsi un invariant de graphe. Pour certaines familles de graphes, les nombres booléens satisfont des propriétés combinatoires intriguantes. Ce travail est une collaboration entre Claesson, Kitaev, et Ragnarsson.


10.37236/1276 ◽  
1995 ◽  
Vol 3 (2) ◽  
Author(s):  
Anders Björner ◽  
Francesco Brenti

We study combinatorial properties, such as inversion table, weak order and Bruhat order, for certain infinite permutations that realize the affine Coxeter group $\tilde{A}_{n}$.


10.37236/9982 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Antoine Abram ◽  
Nathan Chapelier-Laget ◽  
Christophe Reutenauer

Motivated by the study of affine Weyl groups, a ranked poset structure is defined on the set of circular permutations in $S_n$ (that is, $n$-cycles). It is isomorphic to the poset of so-called admitted vectors, and to an interval in the affine symmetric group $\tilde S_n$ with the weak order. The poset is a semidistributive lattice, and the rank function, whose range is cubic in $n$, is computed by some special formula involving inversions. We prove also some links with Eulerian numbers, triangulations of an $n$-gon, and Young's lattice.


Sign in / Sign up

Export Citation Format

Share Document