scholarly journals On Sumsets of Multisets in $\mathbb{Z}_p^m$

10.37236/3269 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Kaisa Matomäki

For a sequence $A$ of given length $n$ contained in $\mathbb{Z}_p^2$ we study how many distinct subsums $A$ must have when $A$ is not "wasteful" by containing too many elements in same subgroup. Martin, Peilloux and Wong have made a conjecture for a sharp lower bound and established it when $n$ is not too large whereas Peng has previously established the conjecture for large $n$. In this note we build on these earlier works and add an elementary argument leading to the conjecture for every $n$.Martin, Peilloux and Wong also made a more general conjecture for sequences in $\mathbb{Z}_p^m$. Here we show that the special case $n = mp-1$ of this conjecture implies the whole conjecture and that the conjecture is equivalent to a strong version of the additive basis conjecture of Jaeger, Linial, Payan and Tarsi.

2019 ◽  
Vol 485 (2) ◽  
pp. 142-144
Author(s):  
A. A. Zevin

Solutions x(t) of the Lipschitz equation x = f(x) with an arbitrary vector norm are considered. It is proved that the sharp lower bound for the distances between successive extremums of xk(t) equals π/L where L is the Lipschitz constant. For non-constant periodic solutions, the lower bound for the periods is 2π/L. These estimates are achieved for norms that are invariant with respect to permutation of the indices.


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Michael Novack ◽  
Xiaodong Yan

1980 ◽  
Vol 17 (04) ◽  
pp. 1133-1137 ◽  
Author(s):  
A. O. Pittenger

Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in the direction of the first guess and as close to it as possible. It is shown that if the distribution of guesses is rotationally symmetric about the true location of the unseen object, ¾ is the sharp lower bound for the success probability of the second guesser. If the distribution is fixed and the dimension increases, then for a certain class of distributions, the success probability approaches 1.


2014 ◽  
Vol 51 (03) ◽  
pp. 885-889 ◽  
Author(s):  
Tomomi Matsui ◽  
Katsunori Ano

In this note we present a bound of the optimal maximum probability for the multiplicative odds theorem of optimal stopping theory. We deal with an optimal stopping problem that maximizes the probability of stopping on any of the last m successes of a sequence of independent Bernoulli trials of length N, where m and N are predetermined integers satisfying 1 ≤ m < N. This problem is an extension of Bruss' (2000) odds problem. In a previous work, Tamaki (2010) derived an optimal stopping rule. We present a lower bound of the optimal probability. Interestingly, our lower bound is attained using a variation of the well-known secretary problem, which is a special case of the odds problem.


2015 ◽  
Vol 91 (3) ◽  
pp. 353-367 ◽  
Author(s):  
JING HUANG ◽  
SHUCHAO LI

Given a connected regular graph $G$, let $l(G)$ be its line graph, $s(G)$ its subdivision graph, $r(G)$ the graph obtained from $G$ by adding a new vertex corresponding to each edge of $G$ and joining each new vertex to the end vertices of the corresponding edge and $q(G)$ the graph obtained from $G$ by inserting a new vertex into every edge of $G$ and new edges joining the pairs of new vertices which lie on adjacent edges of $G$. A formula for the normalised Laplacian characteristic polynomial of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$) in terms of the normalised Laplacian characteristic polynomial of $G$ and the number of vertices and edges of $G$ is developed and used to give a sharp lower bound for the degree-Kirchhoff index and a formula for the number of spanning trees of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$).


1980 ◽  
Vol 12 (01) ◽  
pp. 200-221 ◽  
Author(s):  
B. Natvig

In this paper we arrive at a series of bounds for the availability and unavailability in the time interval I = [t A , t B ] ⊂ [0, ∞), for a coherent system of maintained, interdependent components. These generalize the minimal cut lower bound for the availability in [0, t] given in Esary and Proschan (1970) and also most bounds for the reliability at time t given in Bodin (1970) and Barlow and Proschan (1975). In the latter special case also some new improved bounds are given. The bounds arrived at are of great interest when trying to predict the performance process of the system. In particular, Lewis et al. (1978) have revealed the great need for adequate tools to treat the dependence between the random variables of interest when considering the safety of nuclear reactors. Satyanarayana and Prabhakar (1978) give a rapid algorithm for computing exact system reliability at time t. This can also be used in cases where some simpler assumptions on the dependence between the components are made. It seems, however, impossible to extend their approach to obtain exact results for the cases treated in the present paper.


1997 ◽  
Vol 62 (3) ◽  
pp. 708-728 ◽  
Author(s):  
Maria Bonet ◽  
Toniann Pitassi ◽  
Ran Raz

AbstractWe consider small-weight Cutting Planes (CP*) proofs; that is, Cutting Planes (CP) proofs with coefficients up to Poly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP* proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of small-weight CP, our method also gives a new and simpler exponential lower bound for Resolution.We also prove the following two theorems: (1) Tree-like CP* proofs cannot polynomially simulate non-tree-like CP* proofs. (2) Tree-like CP* proofs and Bounded-depth-Frege proofs cannot polynomially simulate each other.Our proofs also work for some generalizations of the CP* proof system. In particular, they work for CP* with a deduction rule, and also for any proof system that allows any formula with small communication complexity, and any set of sound rules of inference.


Sign in / Sign up

Export Citation Format

Share Document