scholarly journals A Note on the Acquaintance Time of Random Graphs

10.37236/3357 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
William B. Kinnersley ◽  
Dieter Mitsche ◽  
Paweł Prałat

In this short note, we prove the conjecture of Benjamini, Shinkar, and Tsur on the acquaintance time $\mathcal{AC}(G)$ of a random graph $G \in G(n,p)$. It is shown that asymptotically almost surely $\mathcal{AC}(G) = O(\log n / p)$ for $G \in G(n,p)$, provided that $pn > (1+\epsilon) \log n$ for some $\epsilon > 0$ (slightly above the threshold for connectivity). Moreover, we show a matching lower bound for dense random graphs, which also implies that asymptotically almost surely $K_n$ cannot be covered with $o(\log n / p)$ copies of a random graph $G \in G(n,p)$, provided that $pn > n^{1/2+\epsilon}$ and $p < 1-\epsilon$ for some $\epsilon>0$. We conclude the paper with a small improvement on the general upper bound showing that for any $n$-vertex graph $G$, we have $\mathcal{AC}(G) = O(n^2/\log n )$.

10.37236/5180 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Dieter Mitsche ◽  
Xavier Pérez-Giménez ◽  
Paweł Prałat

A dominating set of a graph is a subset $D$ of its vertices such that every vertex not in $D$ is adjacent to at least one member of $D$. The domination number of a graph $G$ is the number of vertices in a smallest dominating set of $G$. The bondage number of a nonempty graph $G$ is the size of a smallest set of edges whose removal from $G$ results in a graph with domination number greater than the domination number of $G$. In this note, we study the bondage number of the binomial random graph $G(n,p)$. We obtain a lower bound that matches the order of the trivial upper bound. As a side product, we give a one-point concentration result for the domination number of $G(n,p)$ under certain restrictions.


2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.


Author(s):  
Yilun Shang

We consider the random graph modelG(w)for a given expected degree sequencew=(w1,w2,…,wn). Warmth, introduced by Brightwell and Winkler in the context of combinatorial statistical mechanics, is a graph parameter related to lower bounds of chromatic number. We present new upper and lower bounds on warmth ofG(w). In particular, the minimum expected degree turns out to be an upper bound of warmth when it tends to infinity and the maximum expected degreem=O(nα)with0<α<1/2.


Author(s):  
Peter Allen ◽  
Julia Böttcher ◽  
Julia Ehrenmüller ◽  
Jakob Schnitzer ◽  
Anusch Taraz

Abstract The bandwidth theorem of Böttcher, Schacht and Taraz states that any n-vertex graph G with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)n$ contains all n-vertex k-colourable graphs H with bounded maximum degree and bandwidth o(n). Recently, a subset of the authors proved a random graph analogue of this statement: for $p\gg \big(\tfrac{\log n}{n}\big)^{1/\Delta}$ a.a.s. each spanning subgraph G of G(n,p) with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)pn$ contains all n-vertex k-colourable graphs H with maximum degree $\Delta$ , bandwidth o(n), and at least $C p^{-2}$ vertices not contained in any triangle. This restriction on vertices in triangles is necessary, but limiting. In this paper, we consider how it can be avoided. A special case of our main result is that, under the same conditions, if additionally all vertex neighbourhoods in G contain many copies of $K_\Delta$ then we can drop the restriction on H that $Cp^{-2}$ vertices should not be in triangles.


2011 ◽  
Vol 20 (4) ◽  
pp. 617-621 ◽  
Author(s):  
ABBAS MEHRABIAN

We consider a variant of the Cops and Robbers game where the robber can movetedges at a time, and show that in this variant, the cop number of ad-regular graph with girth larger than 2t+2 is Ω(dt). By the known upper bounds on the order of cages, this implies that the cop number of a connectedn-vertex graph can be as large as Ω(n2/3) ift≥ 2, and Ω(n4/5) ift≥ 4. This improves the Ω($n^{\frac{t-3}{t-2}}$) lower bound of Frieze, Krivelevich and Loh (Variations on cops and robbers,J. Graph Theory, to appear) when 2 ≤t≤ 6. We also conjecture a general upper boundO(nt/t+1) for the cop number in this variant, generalizing Meyniel's conjecture.


2015 ◽  
Vol 25 (1) ◽  
pp. 76-88 ◽  
Author(s):  
DENNIS CLEMENS ◽  
HEIDI GEBAUER ◽  
ANITA LIEBENAU

In the tournament game two players, called Maker and Breaker, alternately take turns in claiming an unclaimed edge of the complete graph Kn and selecting one of the two possible orientations. Before the game starts, Breaker fixes an arbitrary tournament Tk on k vertices. Maker wins if, at the end of the game, her digraph contains a copy of Tk; otherwise Breaker wins. In our main result, we show that Maker has a winning strategy for k = (2 − o(1))log2n, improving the constant factor in previous results of Beck and the second author. This is asymptotically tight since it is known that for k = (2 − o(1))log2n Breaker can prevent the underlying graph of Maker's digraph from containing a k-clique. Moreover, the precise value of our lower bound differs from the upper bound only by an additive constant of 12.We also discuss the question of whether the random graph intuition, which suggests that the threshold for k is asymptotically the same for the game played by two ‘clever’ players and the game played by two ‘random’ players, is supported by the tournament game. It will turn out that, while a straightforward application of this intuition fails, a more subtle version of it is still valid.Finally, we consider the orientation game version of the tournament game, where Maker wins the game if the final digraph – also containing the edges directed by Breaker – possesses a copy of Tk. We prove that in that game Breaker has a winning strategy for k = (4 + o(1))log2n.


10.37236/6385 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Éva Czabarka ◽  
Johannes Rauh ◽  
Kayvan Sadeghi ◽  
Taylor Short ◽  
László Székely

Joint degree vectors give the number of edges between vertices of degree $i$ and degree $j$ for $1\le i\le j\le n-1$ in an $n$-vertex graph. We find lower and upper bounds for the maximum number of nonzero elements in a joint degree vector as a function of $n$. This provides an upper bound on the number of estimable parameters in the exponential random graph model with bidegree-distribution as its sufficient statistics.


10.37236/619 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Heidi Gebauer

We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular $n$-vertex graph in time $O(1.276^{n})$, improving on Eppstein's previous bound. The resulting new upper bound of $O(1.276^{n})$ for the maximum number of Hamilton cycles in 3-regular $n$-vertex graphs gets close to the best known lower bound of $\Omega(1.259^{n})$. Our method differs from Eppstein's in that he considers in each step a new graph and modifies it, while we fix (at the very beginning) one Hamilton cycle $C$ and then proceed around $C$, successively producing partial Hamilton cycles.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Vojtěch Dvořák

Consider the following game between Builder and Painter. We take some families of graphs $\mathcal{G}_{1},\ldots,\mathcal{G}_t$ and an integer $n$ such that $n \geq R(\mathcal{G}_1,\ldots,\mathcal{G}_t)$. In each turn, Builder picks an edge of initially uncoloured $K_n$ and Painter colours that edge with some colour $i \in \left\{ 1,\ldots,t \right\}$ of her choice. The game ends when a graph $G_i$ in colour $i $ for some $G_i \in \mathcal{G}_i$ and some $i$ is created. The restricted online Ramsey number $\tilde{R}(\mathcal{G}_{1},\ldots,\mathcal{G}_t;n)$ is the minimum number of turns that Builder needs to guarantee the game to end. In a recent paper, Briggs and Cox studied the restricted online Ramsey numbers of matchings and determined a general upper bound for them. They proved that for $n=3r-1=R_2(r K_2)$ we have $\tilde{R}_{2}(r K_2;n) \leq n-1$ and asked whether this was tight. In this short note, we provide a general lower bound for these Ramsey numbers. As a corollary, we answer this question of Briggs and Cox, and confirm that for $n=3r-1$ we have $\tilde{R}_{2}(r K_2;n) = n-1$. We also show that for $n'=4r-2=R_3(r K_2)$ we have $\tilde{R}_{3}(r K_2;n') = 5r-4$.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


Sign in / Sign up

Export Citation Format

Share Document